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Elastic anisotropy due to aligned cracks in
porous rock

Leon Thomsen?

Abstract

All theoretical expressions which relate the characteristics of saturated aligned
cracks to the associated elastic anisotropy are restricted in some important way, for
example to the case of stff pore fluids, or of the absence of equant porosity, or of g
moderately high frequency band. Because of these restrictions, previous theory is
not suitable for application to the upper crust, where the pore fluid is brine (K, =
K200, the equant porosity is often substantial (¢, = 0.1), and the frequency band
is sonic to seismic. This work removes these particular restrictions, recognizing in
the process an important mechanism of dispersion. A notable feature of these
more general expressions is their insensitivity, ar low frequency, to the aspect ratio
of the cracks; only the crack density is critical. An important conclusion of this
more general model is thar many insights previously achieved, concerning the
shear-wave splitting due 1o vertical aligned saturated cracks, are sustained.
However, conclusions on crack orientation or crack aspect ratio, which were
derived from P-wave data or from shear-wave * critical angles', may need to be
reconsidered. Further, the non-linear coupling berween pores and cracks, due w
pressure equalization effects, means that the (linear) Schoenberg-Muir caleulus
may not be applied to such systems, The theory receives strong support from
recent data by Rathore er o/, on artificial samples with controlled crack geometry,

Introduction

'This work concerns the theory of the effect of a set of aligned circular cracks upon
the elasticity of the resulting composite material, Of course, the primary effect is g
reduction in certain of the elastic moduli, so that the resulting composite material is
clastically anisotropic. Assuming that the matrix material is homogencous and iso-
tropic, the composite material is clearly transversely isotropic, with its symmetry
axis lying perpendicular to the flat faces of the cracks. At issue is the dependence aof
the anisotropy upon angle, upon crack density, upon crack shape, upon stiffness of
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the fluid in the cracks, upon the further presence of equant (non-flat) porosity in
the rock, and upon frequency.

These topics are reviewed and further developed in the next section. The
resulting theory is applied to the propagation of elastic waves, in the asymptotic
limit of long wavelengths. The cracks may be conceived as either micro-cracks or
‘joints’, 50 long as they are small compared to the seismic wavelength. Only the
limiting case of low crack density and thin eracks is considered.

The theory of the effect of cracks on the elasticity of solids has a long history,
going back at least to the classic paper by Eshelby (1957). Watt, Davies and
O’Connell (1976) gave a theoretical review (in the geophysical context) for isotropic
cracks. In all this time, there has been no adequate laboratory confirmation of the
theory; this situation has recently been remedied by Rathore et al. (1991, 1995).
The data, discussed in the last section, strongly supports the theory in its present
form.

Small Aligned Crack Density: Arbitrary Porosity

The expressions for the case of small crack density and zero equant porosity are
implicit in the work by Walsh (1969) and others of randomly oriented cracks. The
caze of parallel cracks seems to have been first discussed explicitly, using a scat-
tering formalism, by Garbin and Knopoff (1973, 1975a) for dry cracks and (1975b)
for liquid-saturated cracks. Hudson (1980, 1981) developed these ideas further, and
they have underlain many contributions by Crampin (e.g. 1981, 1985, 1986) and
co-workers.

The effect of equant porosity (i.e. that pore space not characterized as being “thin
and flat’ and not having any particular fabric) is not included in this prior work. At
first thought, such porosity would not appear to affect the anisotropy, since it does
not have any preferred orientation. However, it develops that there is an effect on
the anisotropy, caused by fluid flow between cracks and pores; this is a primary
subject of the present work.

The subject of weakly anisotropic elastic media with a single axis of symmetry
was discussed by Thomsen (1986); the resulting expressions for the phase veloci-
ties are

52(0) = «d[1 + 26 sin® 0 cos® & + 2¢ sin* 6], (la)

728 = ﬁ§[1 +2 “—%(a — &) sin® @ cos? &] (1b)
and

T (0) = Bi[1 + 2y sin® @). (1c)

Here, u, and fi;, are the P- and S-wave velocities in the symmetry direction; @ is the
angle between the wavefront normal and the symmetry axis. The shear mode S| is
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polarized parallel to the symmetry planes (i.e. to the cracks); the shear mode 8L is
polarized orthogonal to 5[, with a non-zero component perpendicular to the sym-
metry plane. (These are sometimes called SH and SV, respectively, but this nota-
tion is confusing when, as in this case the symmetry plane is not necessarily
horizontal.) Here, the anisotropy parameters «, § and p are assumed to be small
(1) and mutually independent.

In the case where the anisotropy is caused by aligned cracks, the anisotropy
parameters may be further specified. Assuming that the cracks are circular ellip-
soids (*penny-shaped’), perfectly aligned and sparsely distributed in a porous
medium composed of isotropic grains, it is shown in the Appendix § II that the
anisotropics are given by

_(8Y(, Ko\, [ -v*9E

-(-Ep {3228
2h/1 — v*

(=2

and

5=2(1— v — z(l - zv}y, (2¢)
1—vw

In (2), K, is the incompressibility of the solid grains, K; is that of the fluid in the
cracks, v is the Poison’s ratio of the isotropic porous rock (without the cracks), E is
its Young’s modulus, v* and E* are the corresponding properties of the dry iso-
tropic porous rock.

Under these assumptions, the anisotropies (2} are each linear in the fracture
density n,, which may be written in terms of the number density of cracks N, and
their mean cubed diameter as

3
e = N<%> (3a)

or equivalently in terms of the crack porosity ¢, and aspect ratio ¢fa thickness/
diameter) of the cracks as

_3 ¢
M= an {efa)’

(3b)

The properties of the isotropic porous rock {without the cracks) may be derived
from the measured rock properties (cf, Appendix § I} using

= [B_: o0 (4a)
i \/; (907
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where p is the shear modulus and v and E may be found in the usual isotropic way.
Evidently (cf. (2a)), the Poisson’s ratio v of the isotropic porous rock appears in a -
way which requires a short iteration loop for the calculation of ¢; for small crack
density, this is not a serious problem. The properties of the dry isotropic porous
rock (if not measured) may be estimated in a conventional way, e.g. using the
method of Biot (1941) and Gassmann (1951) or Mavko and Jizba (1991); the
imprecision thus incurred is not significant to the anisotropic conclusions.

The principal contribution of this work consists in the derivation {Appendix
§II) of the ‘fluid influence factor’ D of (2), specified (in the limit of low
frequency) by

K, K K* -t
Dclﬂﬂ} = [I - 'K_,: + K_.:,'b {(] - E) + Ac("*}#;}] 1 (53_}

where K* is the incompressibility of the dry isotopic porous rock and g is the total
porosity (cracks plus pores, etc.) of the rock. A, is a known function of v¥, given by
(A26b). The subscript on D, indicates that it refers to cracks in an isotropic
medium of arbitrary isotopic porosity, perhaps including equant pores, randomly
orientated cracks and pore throats, all hydraulically connected. (In particular, there
is no limitation to finite ¢, as all the effects of finite porosity are contained within
the phenomenological parameter K*.)

In this context, ‘low frequency ’ means low enough for the fluid pressure to have
time to equilibrate locally between cracks and adjacent pores. That is, it is much
less than the *squirt frequency’, a characteristic rock property which depends on
the details of the crack-pore microgeometry and the properties of the fluid. The
squirt frequency can be estimated by various model theories (scc e.g. 0°Connell
and Budiansky 1977; Mavko and Jizba 1991) and usually lies somewhere between
the sonic and ultrasonic bands, for brine-filled rocks. Hence, for application to
seismic band data, the low-frequency approximation is appropriate. Further con-
straints on the squirt frequency are outside the scope of the present paper.

At “moderately high® frequencies, where the fluid does not have time to flow at
all between various portions of the local microgeometry, the expression of D is
(see Appendix II) given by

K

K
D mh) = {1 - -K—: + 2 {Aciv*}

LTS o

'i': {1 - K:.I'-"I-F‘:]I
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The ‘moderately high' frequency approximation is useful in analysing ultrasonic
data. At still higher frequencies (O'Connell and Budiansky 1977), the shear stress
in the fluid is unrelaxed (due to the fluid viscosity) and at the highest frequencies,
Rayleigh scattering becomes important. These high frequencies are excluded from
the present analysis,

The principal difference between (5a) and (5b) is that the porosity (which
appears in the denominator within the sguare brackets) is the total porosity ¢ in
the low-frequency case (5a), and the crack porosity ¢, in the ‘moderately high’
frequency case (5b). Since these two porosities usually differ greatly, the numerical
consequences of this difference are substantial. Physically, these two porosities
identify the volumes of fluid which are pressurized by deformation of the cracks
{during wave propagation): the entire pore volume in the low-frequency case, and
the cracks alone in the *moderately high* frequency case.

In order to understand the meaning of these equations, it is useful to consider
some special cases. First, consider the case where the equant porosity is small
[ < 10%), so that its effects may be modelled, just as the aligned cracks are model-
led. In this case (see Appendix § I11}, the anisotropies may be written

s( K) e (6a)
B/1—w
== 6b
Y 3(2—?,)'?” (e

5 =201 — e — z(ﬂ)y (6c)

1—v,

where n, is the Poisson's ratio of the solid. The fluid influence factor D, whose
subscript indicates that both cracks and pores are modelled, is given by

K E; -1
D, (lo) = [ ~X m {A (v e, + Aei'r'.il?h}] ’ (7a)
1
D;p{mh}=[ % X.g, A (v,}u.;}] =D., (76)

where A is a corresponding coefficient (defined in (A30b)), and ¢, is the isotropic
equant porosity, modelled as isolated spheres.

Mext, consider the limiting case of zero equant porosity, obtained from (7) by
setting ¢, = 0. In this case (with fluid influence factor D), the two formulae coin-
cide, as given by (7b); there is no dispersion due to fluid-flow effects across this
frequency range. This approximation, with zero ¢, is similar to that of Hudson
(1981, §3.3, as specialized to a liquid, i.e. with negligible shear modulus of the
crack-filling material}.

Hudson (1981) restricted his derivation to long wavelengths, ie. to ka/2 €1,
where k is the shear wavenumber. Hence, his treatment iz often characterized as a
‘low-frequency * approximation. However, it is clear from the present discussion
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Figure 1. Effect of aspect ratic on crack-induced anisotropy. Linearized theory: quartzite/
brine example,

that, when applied to materials with a complex pore-space (e.g. rocks), it is valid
only for frequencies which (while still meeting the criterion above) are higher than
the squirt frequency, so that the pore-space does not affect the fluid pressure in the

cracks. In this context, it is more properly called a ‘moderately high-frequency’
aApproximation.

Mote the appearance in {7b) of the factor

Ken, 3 Kp 1

K, b, 4nK,cfa’ ®
first recognized (and denoted 3w/4n) by O’Connell and Budiansky (1974). This

combination of parameters controls the shape of the @p(¢) curve strongly, and the
(¢ curve to a lesser degree, in this case.

In the limit of very thin cracks, i.e. those with very small aspect ratio,

4 4 K.- 1 — 'F,] 1

aﬁanf{_(l-zv, 30’ ©)
the fluid influence factor D, (see (7b)) vanishes, meaning that the anisotropy

parameter ¢ vanishes also (cf. (6a)). With constant crack density n_, this is also the

limit of infinitesimal crack porosity ¢,, and of stiff fluid incompressibility, K, =
K,.

The approximation, with vanishing D_, is similar to that of Hudson (1981, §3.1).
Mote the approximation (9) is a much stronger condition than may be casually
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understood by the term ‘thin cracks’ (i.e. ¢/fa <€ 1). Nonetheless, Crampin and co-
workers (especially pre-1984) achieved great insights via application of this
(Hudson) approximation in the interpretation of shear-wave splitting,

However, the vanishing & {(which means that P-waves travelling across the cracks
are not slower than those travelling along the cracks) is counter-intuitive. More
importantly, actual field data (e.g. Shear and Orcurt 1985, 1986; Stephen 1985;
VWhite and Whitmarsh 1984) often show ¢ # 0, in contexts where empty or gas-filled
cracks are not plausible, so that this limiting case is not appropriate.

Crampin er al. (1986) noted that Hudson’s (1981, §3.3) equations permit non-
zero e if the aspect ratio ¢fe is sufficiently large, ie. (in the present context) if
approximation (9) is not met. However, if equant porosity is present, (&) and (7a)
show that at low frequencies, the effect of cracks is to require £ # 0 always, inde-
pendent of aspect ratio, even when the fluid is brine. This point is illustrated here
by two specific calculations which illustrate the effect of equant porosity.

Figure 1 shows the theoretical low-frequency phase velocities calculated with (1),
(6}, (7), using the parameters of a typical crystalline rock (¢, = 0}, saturated with
brine. The fipure shows two cases with different ¢_ {or equivalently, different ¢/a)
at fixed #,. The angular dependence of ¢, is qualitatively dependent upon ¢/a, and
that of ©,, (hence of the critical angle where the two shear velocities are equal,) is
quantitatively dependent. Crampin (1984, 1986) utilized Hudson's (1981) corre-
sponding equations (including this degree of freedom) to model ficld data, thereby
deducing a value of in sire crack aspect ratio.

However, Fig. 2 shows the same calculations, with the same material parameters,
except with 10% egquant porosity. The figure illustrates the insensitivity of these
calculations to aspect ratio; the dashed curves (for very thin cracks) are negligibly
different from the solid curves (for nominally thin cracks). Numerically, this
happens because the porosity in the denominator of (7a) is total (modelled) porosity
#, + ., not crack porosity ¢.. Hence, this result, and the following discussion,
apply equally as well to the more general case, equations (1), {2), (4) and (5a) with
arbitrary equant porosity. A similar effect is seen if the fluid in the pore space has a
very low incompressibility K, e.g. if it is a gas.

The non-trivial effect on anisotropy of the equant porosity, although counter-
intuitive at first, may be understood physically as follows. An empty crack is com-
pliant because of its 2D shape; equant pores are stiffer. If the crack is isolated, or
connected only to other cracks of similar shape and orientation, then a saturating
liquid can significantly stiffen the crack, because of the incompressibility K of the
liquid. However, if the crack is connected to the equant pore space, then as a
P-wave passes, the liquid will * squirt® into the pore space (which is less compilant
than the crack) instead of stiffening the crack. Hence, because of this fluid pressure
equilization, the pores do affect the compilance of the cracks, and hence the anisot-
ropy.

Therefore, it follows that the special case of crack-induced anisotropy with small
or zero values for the anisotropy parameter £ is not appropriate for most upper
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Figura 2. Small effect of aspect ratio when equant porosity is present. Linearized theory:
sandstone/brine example,

crustal contexts where equant porosity is non-negligible, and the pore-filling fluid
is brine or oil. This applies especially where P-waves are a primary data set.
Because of trigonometric identities, this implies that there should be a substantial
28 variation (comparable to the 48 variation) in such P-wave velocities, due to a
single set of vertical saturated cracks.

It is also clear from Fig, 2 that the critical angle {(where the two shear modes
have equal velocities) is not a strong function of the crack aspect ratio, Therefore,
this critical angle may not be reliably used to estimate the aspect ratio.

The fluid pressure equalization discussion here will also occur if cracks of differ-
ing shape (and hence, differing compliance) are present and hydraulically con-
nected. In fact, it is easy to generalize these results to the case of a distribution of
crack shapes ¢/a, all aligned in the same direction (just replace i, everywhere by an
appropriate integral over the distribution),

Further, if multiple crack-sets exist, with differing orientations, & similar con-
sideration is required. That is, not only will the symmetry be lower, in general than
that considered here, but also fluid pressure equalization in the intersecting cracks
will affect each of the corresponding fluid influence factors. Thus, the treatment of
Crampin (1978), ignoring this effect, is appropriate only for unsaturated cracks or
hydraulically unconnected cracks. A correct treatment, although outside the scope
of this paper, may be found as a straightforward extension of these ideas.

It further follows, because of this non-linearity in the crack-pore-crack fuid
interaction, that the linear calculus of Schoenberg and Muir (1989) is not applic-
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able in this context. Thart is, the compilance of one structural element {e.g. pores or
cracks) depends upon the existence and compliance of other elements (if they are
saturated and hydraulically connected) so that they may not be linearly superposed.
It is well known that further non-linearities arise from finite values of ¢, and #,,
whether or not they are saturated or hydraulically connected {cf. e.g. O"Connell
and Budiansky 1974).

Data and Discussion

This work continues a line of thought established by the classic paper of Eshelby
{1957). Over the years, there has been a vigorous theoretical discussion, particu-
larly focused on isotropic cracks and on the issue of substantial crack density (not
addressed here). But in all this time, there has been no strong laboratory confirma-
tion of rejection of the (original or subsequent) theoretical claims. The difficulty
has been in the determination of the microscopic structure of the cracks: their
shape, size, orientation and distribution. Without such prior determination, the
parameters of the theory are free for fitting, thus reducing the predictive power of
the theory.

This situation was changed by Rathore et al. (1991, 1995}, who developed tech-
niques for manufacturing artificial samples with known crack geometries. Pre-
viously (for example), artificial aligned * cracks * had been constructed by stacking
together pieces of glass, with the shape of the cracks determined by the unknown
topography on the glass surfaces. By contrast, the technique of Rathore et al.
(1991, 1994) was to construct an artificial porous rock by glueing together grains of
sand, with imbedded discs of metal of known size, shape, orientation and distribu-
tion. These metal discs were then leached our chemically, leaving disc-shaped
voids, with the sandstone porosity and permeability providing leachant access to
the discs.

Representative data from Rathore et al. is shown below (both saturated and dry,
in both frequency ranges), at various angles of propagation, with comparisons to
the present theory, equations {1)-(5), and to the theory of Hudson (1981, §3.3). In
the comparisons, the theory is fitted to the data in the crack-parallel direction; the
anisotropic variation is then an unfitted prediction of each theory. The parameters
thus fitted are indicated graphically in the figures (near 90%), and are listed in
Table 1.

For the Hudson theory, the anisotropy parameters shown in Table 1 are defined
similarly to those of equation (1), but are normalized by the crack-parallel veloci-
ties, instead of the crack-normal velocities, following Hudson. Also, in fitting the
Hudson theory, the *Solid,’ properties are fitted independently in the dry and
saturated cases, regarding in each case the porous framework as the ‘solid” of the
theory. For the present theory, the two fits are related by the Biot-Gassmann
theory. The well-known shorteomings, at finite frequencies, of the Biot-Gassman
theory (cf. e.g. Thomsen 1985) are reflected in an apparent frequency-dependence
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Table 1. Parameters: input and derived

Input rock parameters

Dty Saturated Input crack parameters
¥, (907) (km/s) 2.56 2.67 crack density 5, 0,106
V,, (90°) (kmfs)  1.52 1.41 crack porosity é, 0.0023
Ky (Mpsi) 0.0 (.32 aspect ratio ¢f/a 0.0036
p (gfem?®) 1.722 2.072 equant porosity ¢, 0.35

Thomsen: Equaricns (15

Saturated, Saturated, moderately
low frequency high frequency Diry

{Fig. 3a) {Fig. 3b) {Figs 5a, b)
g, (kmys) 238 2.07 2.07
fo (kmy's) 1.27 1.37 1.37
£ 0.129 0.005 0.267
& 0.091 —0.097 0.277
b 0.115 0.115 0.115
v 0.321 0,307 0.241
¢ (km/s) 275 267 261
f {km/s) 1.41 1.41 1.52
K, (Mpsi} 4.558 319 —

Hudson (1981, §3.3)

Saturated Dry
(Figs 3a, b) (Figs 5a, b)
oy (kmys) 2.67 2.65
B, (km/s) 1.41 1.52
- 0,006 0.267
dy —0.113 0.248
Tre 0.109 0.114
v, () 0.307 0.254

of the inferred K, (cf. Table 1); this is viewed as being numerically insignificant to
the present argument.

Figure 3a shows the saturated case, with the “data’ representing the first breaks
of the waveforms taken to correspond to the arrivals of the highest frequencies with
significant power (about 80 kHz). The fipure also shows calculations (as above)
from both theories, which agree closely with each other in this case, and with the
data.

It deserves emphasis that neither the P-wave nor shear-wave anisotropic varia-
tion (including the shear-wave splitting} was fitted here in any way. With the
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known crack {and pore} geometry, there were no free model parameters for fitting
the anisotropy.

Figure 3b shows the saturated * data’ at low frequencies; this is the case of great-
est interest for interpreting seismic dara. As expected from the previous theoretical
discussion, the principal effect of the fluid pressure equilibration at low frequencics
is on the P-wave anisotropy and on the critical angle {where the two shear waves
have equal velocities). It is clear from the waveforms (sce below) that there is sig-
nificant angle-dependent attenuation and dispersion. The theory of Hudson (1981}
includes attenuation due to scattering (the high-frequency effect mentioned above),
bur explicitly neglects the corresponding dispersion; the dashed curves are the
same as in Fig. 3a. The present theory does recognize dispersion in this frequency
range; Fig. 3a uses (7b), whereas Fig. 3b uses (7a). The ‘data’ show good agree-
ment with the present theory (solid curves), in its low-frequency form.

The ‘data’ in Fig. 3b are interpreted from the same waveforms as the “data’ of
Fig. 3a; they are representative of the lowest frequencies present (about (30 kHz).
These are interpreted from the wave-forms in a conventional way, by subtracting
from the high-frequency velocity a dispersion term calculated from the measured
attenuation. In general, the interpreted velocity at a given low frequency fy
depends upon the dispersion, hence the attenuation, at all frequencies between fj
and the high frequency f, of the measurement. Since attenuation information is
only available in the frequency band of the data, it is not possible to correct to zero
frequency, but only to the lowest frequencies f, of the data, For each angle of
propagation, one may estimate the dispersion by

1
o fol = vffﬂ(l + =0 In (;—':)) (10}

(see Aki and Richards 1980, §5.5.2), where f, is the low frequency identified above,
£, is the high frequency, and @ is the average quality factor in the interval ( fy, f3).
This formula is formally limited to large O and to isotropic materials. Neverthe-
less, it is used here, independently for each angle of propagation, to estimate the
low-frequency velocities. The resulting corrected data are those shown and com-
pared with theory in Fig. 3b. Rathore er af. (1991, 1995) pick the low-frequency
arrivals directly from the waveform data; the results are qualitatively consistent
with the present technique (high-frequency picks, dispersion correction).

Because the dispersion corrections are so substantial, Fig. 4 shows the transmit-
ted P-wave forms (for each angle of propagation), with deduced values of Q0 for
each. These attenuation data represent the average Q over the bandwidth of signifi-
cant energy, i.e. 30-80 kHz for this data. It is obvious, from visual inspection, that
the arrival of the bulk of the energy (for the waves travelling across the cracks) is
delayed, even though the first breaks are not. The procedure indicated above,
equation (10}, merely quantifies this; the results are recorded in Fig. 3b.

It deserves emphasis that the data correction here was not adjusted to match the
data, but comes independently from the estimates of O (Fig. 4), and the bandwidth
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Figura 4, IKU sample 901¢, saturated: P waveforms versus angle of incidence to crack-
planes.

of the data. The apparent high accuracy of prediction by the present theory is
probably fortuitous, as the procedure deseribed here probably represents a minimal
correction. Nevertheless, the sign and approximate magnitude of the required cor-
rection are surely correct.

Turning now to the dry case, Fig. 5a shows ‘moderately high® frequency data
(first breaks), together with the two theoretical calculations. In this case, the
anisotropy is large (¢ = 23%), 30 the neglect of non-linear terms (by both theories)
is not really justified, and only qualitative agreement with the data should be
expected. MNonetheless, the present theory does show good quantitative agreement,
in both the P-wave and the shear-wave anisotropy. Hudson’s theory severely over-
estimates the P-wave anisotropy, but accounts for the shear-wave anisotropy well.

Figure Sb tells a similar story, but here the *data’ are representative of the
lowest frequencies in the data. The low-frequency velocities were calculated from
the data in Fig. 5a and the observed attenuation, as above; since the corrections are
minor, the corresponding waveforms are not shown. Neither theory contains any
provision for dispersion in dry rock, hence the theoretical curves are the same as in
Fig. 5a. Since the velocity corrections are minor, the agreement with theory
remains surprisingly good.

These data {particularly the saturated data) are interpreted as offering strong
support for the theory, in its present form. In fact, these data, based on artificial
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Figure 5. (a) Data interpreted from TKU sample 501c {dry). ‘ Moderately high' frequency.
(b} Data interpreted from TKU sample 901¢ (dry). * Low’ frequency.
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rocks with controlled crack geometry, represent the first strong confirmation of the
theory of Eshelby (1957) and the many subsequent theorists who built upon this
classic paper. The confirmation is ‘strong’ because no free model parameters are
available to fit the data, yet the predictions are quantitatively accurate.

Of course, real rocks do not have idealized crack-shapes as did the artificial rocks
of Rathore er al. However, this experimental verification of the theory lends con-
fidence to its estimation of *effective’ crack parameters in the real rocks. For
example, the theory says that the details of the crack shape are unimportant, so
long as the cracks are thin (with equant porosity present, not even their aspect ratio
1s important). It is clear that the techniques of Rathore et al. may be used to test
this proposition further; if verified, it means that the complicated shapes of natural
cracks may be effectively modelled by the simple theory.

For application to most crustal rocks (with non-negligible equant porosity), the
present generalization of Eshelby's (1957) work is important, as it helps avoid mis-
interpretation of field data. Since each of the various anisotropy parameters (2) is
linear in crack density #,, their relative sizes depend only on the Poisson’s ratio of
the uncracked rock, and the other parameters contained in the fluid influence
factor D, (5a). The correct form of D, avoids the possibility of erroneously con-
cluding, for example, that a large relative magnitude of ¢ or & implies gas in the
cracks (White and Whitmarsh 1984),

The present work is also important (in most crustal applications) in the physical
interpretation of the critical angle (where the two shear modes have equal
velocities), and in the analysis of multiple crack-sets, following the discussion in
the previous section.

Finally, it highlights the role of the pore fluid, and shows how fluid ‘squirt’
between various portions of the pore-space (g well-known effect in isotropic rocks,
and a dominant mechanism of attenuation) also affects the anisotropy, in a
frequency-dependent way.
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Appendix
Derivations
. Solid matrix

This derivation specializes, generalizes, clarifies and corrects the work of Hoenig
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(1978, 1979); we consider first the case of cracks only. The elastic compliance
tensor M, of a transversely isotropic body may be written as a two-dimensional
symmetric matrix M, following the usual Voigt recipe:

(o) -4 1
Ey; \Eyy  2pes E;

1 1
E, E;
1
E;s
M= . (Ala)
1
Hag
1
Haq
1
Hss

Only the non-zero elements of the upper triangle are shown. There are five inde-
pendent elastic compliances.

If the anisotropy is caused by parallel cracks lying in the 3-plane of an isotropic
solid, then the only strain components affected by the cracks have subscripts 13, 23
and 33 (the last only when the stress is also 33). In this case, (Ala) reduces to the
special form

[1/E, —vJE, —v/E, 2
1/E, -v/E,
1/E
M= s {Alb)
1/
/i
L 1/u, |

which has only four independent elastic compliances, two of which are shown as
the elastic moduli E, and g, of the uncracked solid. Its Poisson’s ratio v, has the
usual connections with the isotropic solid moduli:

L_E_ _1_E
T, 2 6K,
The reduction in degrees of the freedom (from 5 to 4) represented by (Alb) results

in a constraint among the five elastic moduli, independent of any particular model
for the cracks, so long as they are thin and parallel. This constraint may be written

(A2)

T 1995 Furopean Association of Geoscientists & Engineers, Geopliysical Prospecting, 43, 805829



Elastic anisetrapy 821

in terms of the elastic moduli as
caa CII - Cia = zcﬁﬁtcﬁﬁ + Clal (A3}

The cracks affect only the two quantities £ and . Before deriving velocitics, we
discuss and refine Hoenig's {1978, 1979) results for these crack-weakened moduli.

Using only elementary operations of volumetric averaging (following arguments
established by Hill 1963), Hoenig {1979} derived (his equation (2.147) an expres-
sion equivalent to

Jﬂ-u.mrr anl.n = ""ﬂjm &ﬂl.l'l + ¢¢{si¢j} + écpt‘ A’ﬂjtt EH {ﬂlﬂ-}

where the brackets indicate a volumetric average and repeated subscripts imply
summation. The symbol & refers to a component of the strain in the cracks,
resulting from the far-field application of the average stress . py is the correspond-
ing fluid pressure increment in the cracks; it is uniform if, as assumed art this stage,
the cracks are all of the same shape.

From {A4), one may form special cases corresponding to simple stresses. For a
pure shear (13) stress,

&n-nlil 3:] = &13{3m13n3 + 5’13 5«1}'

{The explicit argument 13 simply indicates which special case is considered.) The
corresponding compliance is

1 _ _ 1 54013
E= 44=M|313=E+<"";}E":>¢=~ (AS)

Because of the form of (A4), it is easier to write the equation for E first in terms of
the anisotropic bulk modulus, i.e.
2 1 6y, 1 1 1

1
R=Mimm=5+5-E "R VYE E (A6)

where the last form uses (A2). For a pure compressive stress, o) = — Py
summing (A4} yields

11 D)\ Ped

R_Kl+¢¢< _.ﬁ >_§KI‘ {ﬁ?j

Addressing the issue of saturation with a fluid of non-negligible K {e.g. brine), we
consider first the bulk modulus, The effects of fluid in a poroelastic medium were
given by Biot (1941} and Gassmann (1951), who assumed a uniform py. Their
results may be used here {despite the lack of hydraulic connectivity in this case
with isolated cracks), because all the cracks have the same shape (thus assuring that
pr is uniform). (The next section treats a more realistic model.) The (Biot=
Gassmann) fluid pressure may be written in terms of the pore strain (cf. Thomsen
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1985 as

pe |11l R
iz (=P -<] @

Here, the strain with superscriptP refers to the entire pore space (isotropic ot not)
and ¢ is the total porosity; this generality will be useful later. The asterisk indi-
cates a property of the dry state (K;=10). In the undrained case, p; =
— Rpeb 077y and (AB) leads to

G\ _ped |1 1) K
“b(—_p) TAK, [K‘* K,](l K.)D"’ o
where
-1
o[-+ 5 G2

In the present context, all the porosity is contained within the cracks. Hence, using
(A9) in (A7), we have

1_1 Ko\ | [ ean\®
=K +(1 _E)¢“<—_ﬁ> D,. (A10)
For the undrained saturated shear modulus, a derivation along the lines of (A8
(A10) may be performed by inspection. Replacing the compressional stress, strain
and moduli with shear equivalents, and recognizing that u/p, = 0, one sees imme-
diately that the shear equivalent of D, is unity and hence that j = p*.

The problem is thus reduced, without further approximation, to finding the
stress-strain ratios in the dry cracks (in brackets above, (AS5) and (A10)). These are
found by solving the associated * canonical problem’ of a single crack in an other-
wise uniform isotropic body subjected to constant far-field stress. For empty circu-
lar ellipsoidal (penny-shaped) cracks, Hoenig (1978, 1979) finds (with a slight
notation change) that

BRI\ 1

< 26,4 > _4(:7,!'&)3, 2 (Alla)
and

Epan )\ * _ ag,.,(aa})*: 1 o

< —p < —F (¢/a)E, B3 (Allb)

where ¢/a is the crack aspect ratio. The dimensionless ‘crack displacement
magnitudes’ .E?:‘ are given by Hoenig (1978) in the self-consistent approximation,
i.e with finite crack density 5, (cf. (3)). (Note, however, that Hoenig (1978) implic-
itly retgined the modulus E, in (A11), even at large y_, instead of replacing it with
F*, thus imperfectly implementing the self-consistent approximation.)
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Since the present work addresses only small erack density, Hoenig's (1978,
1979) expressions must be linearized in n,. The dependence of the EJ‘" on n,_ is of
second order, hence, in the linearization, ﬁf depends only on the properties of the
solid, so the bar and asterisk may be omitted. The linearization vields

32 {1 — v
ﬁzm“;(z_:) {Al2a)
and
4 2
By = - (1= (A12B)

These are equivalent to previous results (Eshelby 1957) for cracks in an isotropic
medium. Hence, using also (3b) and (A2}, we have

<sia{13}>"=ﬁ(1*h) e o Belv) ne (A132)

2&13 3 2_"- ,'I:-qbc_ L, ‘ﬁ:
and
N 16 (1 w3\ n. _ Alv) 1.
< 5 > =% (1~2v,) K¢, K, ¢ (A130)

implicitly defining coefficients B_and A_.
Combining (A2), (AS), (A6), (A10), (A1), (Ald), we finally have equations for
the moduli affected by cracks,

1 1

-=—[1+8, R Al4

p ,u,[ (vnel (Alda)
and

1 1 16 _K; 2

E__E.[l +—3 (1 —K.)(l v,chrj,:|, {Aldb)

where D, is given by (7b) in the main text.

These equations replace (3.6) and {(4.11) respectively of Hoenig (1979). They
have been linearized in small 5., and generalized to avoid the neglect of Ki/K,.
They are valid for any fluid saturant; empty cracks correspond to K = 0. Note
that D, (equation (7b)) contains a2 non-linear term in the composite parameter
(R K )(n /) ; this obviously does not violate the linearization in n, itself. In fact,
D, must have this form in order to exhibit the correct B=( difference between dry
and saturated moduli. In the corresponding gquantity [0 of Budiansky and
O'Connell (1976, or O'Connell and Budiansky (19777, the term-K/K, was implic-
itly neglected, although it follows directly from the exact expressions (Ad4)}-{A%);
this omission was corrected by Budiansky and O’Connell {1980). Hoenig (1978)
neglected it explicitly. Hudson (1980, 1981) omitted it in his equivalents to both
{7b) and (Al4b). With the inclusion of these terms, one sees that the limiting case
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of stiff fluid (e.g. K = K,, as with partially molten aesthenospheric rock) leads to
vanishing &, i.e. to the same result as for vanishing aspect ratio ¢fa (cf. (8)).

It is now possible to derive equations for the elastic wave velocities. The five
parameters (¢, fq, 8, & ¥) required for (1) are given by Thomsen (1986) in terms
of the elastic moduli C,,;. Other measures of anisotropy may be defined (cf. e.g. the
related set discussed by Lyakhovitskiy (1981)); those used here lead to simplicity
in the velocities,

The connections between the M., and the C,, are the standard ones for hexago-
nal symmetry, given by Nye (1957}, for example. For the special case of parallel
cracks (Alb), the five parameters assume the form

g = a[1 + 2(C1 — v /(1 — v))E]"2, (Al5a)
=912
o = {ﬁ} = BJ{1 + 2917, (At5b)
A
- AlS
St owa—a Al3)
where
_B(E _\d-w (E.. )1_2 Al15d
_#.(E 1)(1+V.)+ , e (A159)
1 E
_ E, _ Al5
TaT-w) (E 1)’ i
_lfm A15f)
=3 (ﬁ 1)' (
For the case of weak anisotropy, § simplifies further to
_[E 1 M Y12y
() )

Using (1) and (A15) at § = 90°, one may find an expression linking ©,(90°) and &,
which has the same form as (4). {These omit the subscripts s on a, f and v, since
they pertain to the case of Arbitrary matrix Appendix § I1.)

Independent of this particular model for the cracks, the constraint (A3) may be
written, in the case of weak anisotropy, as

1—2vY £ B 4
é-l‘.(l—v.fls—ﬁ(l_v)1—[1_15101;&%]—4“3}*?;35 Ts ({Al16)

where the last approximation assumes that eg/f, = 2. Finally, (Al5) and (A16) may
be combined to express these anisotropy parameters in terms of the crack density,
as given by (6) and (7b) in the main text.

Anderson, Minster and Cole (1974) have given numerical calculations based on
the work of Eshelby (1957}, which appear to be consistent with these results.
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Il. Arbitrary matrix

The previous case assumed that no porosity was present, except for the aligned
cracks. Including the additional effects of arbitrary isotropic porosity and cracks,
the elastic compliance matrix M has the same form as in (A1b), but with quantities
E, u, and v (affected by the presence of the isotropic pore space) replacing the
corresponding parameters of the solid. Equartion (A4) may be generalized (without
further approximation) to

Hljm &Ml = M:jmrl Emn + ‘i}i(E:j} + é:(sfj} + {'i'lpt.' + ¢5P;}Mrjkl.‘ (ﬂl?)

The second term is the isotropic porosity ¢, (consisting of equant porosity, ran-
domly oriented cracks, pore throats, ete.), multiplied by the average strain in this
pore space. pi and pf are the fluid pressures in the respective parts of the pore
space, assumed uniform in each case.

We need to determine particular instances of (Al7) which specify the four
required moduli E, m, E, . The critical step is to establish the compliance differ-
ences, independently of the isotropic porosity.

For the shear moduli, using the same logic which led to (AS),

11 siu{lzj>

S g B2 AlSa

»“ Ay ¢'< 2':’12 { :I
and

11 2‘13{13}> <s‘u£13}> 1 Eia(l3il>

- =— A= —_— = e = ) Algb

H .“:+¢< 23y, o 2513 .H+¢ 204y ¢ )
For the bulk modulus, using the same logic which led to (A7),

l _ i ar‘unr(:};] Elmmwlj ﬂf ¢|: + P_:’ 'If'ri

Iy ""“( ~5 > * qh‘< 5 >' K, A1)
of which the isotropic part is

1_1 i)\ PiO:

K—K’+¢'l< —5 > K, (A20)

Addressing the issue of saturation, we must consider the fluid-pressure variation
within the pore space. Since different parts of the pore-space have different com-
pliances, we must recognize the possibility of fluid squirt from one portion to
another, hence the time available for such squirting, hence the frequency of the
excitation.

At sufficiently low frequencies, the fluid pressures in all portions of the pore
space have time to equalize, i.e. pj = pf = p;. Rewriting (A8) and (A9) to show the
different portions of the pore space explicitly,

(P o( )[R
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where ¢ = ¢, + ¢, is the total porosity. In this context,

pr= - K;(‘Ej (D + % Cehnlii J)) (A22)

and the derivation proceeds as before. Then, combining (A19) and (A21),

The isotropic part of this is

1 1 _K - Emmli)
K-K-+(1 K- J ( <ﬁ< = > D,,  (A24)
o tha

t, using (A19) and (A20),

=3 1 _e)
R™K” ( )[R* K*]” K" (‘*““ﬁ*—h( _(j,:.’>up, (A25)

which is similar in form to (AL10).

The next task is to define the dry strains {£],(13)>* and &, 07 7»* in (Al8b) and
(A25), Since these strains are due to a dilute distribution of aligned cracks, we
make the approximation that they are given by the linear expressions (Al11) for
cracks in a medium with the same Poisson’s ratio (v*) as the dry, porous, isotropic
rock, without aligned cracks:

-’-‘i:i13}>" _16 (1 —v* "") Mo _ B n. A26
< 21 CA VI T STy (A262)
and

N 16 (1 =v*2\ n. A% A,

< —ﬁ> =% (I—Ev*) K.~ K* b, (A265)

This approximation might lead to error if the pores and eracks are of the same size.
However, given the modest sensitivity of the coefficients A, and B,, within the
limited range of their argument v*, the approximation is viewed as non-crucial. In
any case, the real test of the approximation occurs in its application to real data.
From (A18b), the shear modulus is then
1 1
= =~[1+ B.(v*)n.], (A27)
H U
independent of the fluid content and of the frequency. Combining (A9b) (A235) and
(A26b) leads to

L]
%— F B R (1 ~ %) % D(lo) ...low frequency, (A28)
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where D,(lo) is given by (5a) in the main text. Equations (A27) and (A28) define
the compliance differences needed to specify the anisotropies, given by equations of
the same form as (A15), but without the subscripts s. The results are shown explic-
itly in (2} in the main text,

Alternatively, at the *moderately high* frequencies defined in the main text, the
cracks are hydraulically unconnected with the isotropic pore space, so that this
isotropic pore space acts like the solid in (A9). Replacing K, with K in (7) and
(A10), we have

I
EE F K

1
E
= (1 — ?) -4% D (mh) ...*moderately high® frequency,

(A29)

where D, (mh) is given by (5b} in the main text. Equations (A27) and (A29) define
the compliance differences needed to specify the velocities and anisotropies at
‘moderately high® frequencies, given by equations of the same form as (A15), but
without the subscripts 5. The results are shown explicitly in (2).

M. Modelied matrix

In a case where the isotopic, porous matrix may itself be modelled as a dilute
distribution of spherical pores in an isotropic solid, the shear stress-strain ratio in
(A18a) is given by (Budiansky and O'Connell 19800

<ei={12)>* _ 1501 —v) _ Bpiv-)} (A30a)

2&12 -

- {T - Svi}Fs Hy

defining coefficient B as analogous to B, (Al3a). Similarly, the bulk stress-strain
ratio in the paores is given by (Budiansky and O'Connell 1980}

Gul\* 3 (1=v) _ A0
< - > S 2(1—-2wK, ;i, ? (A30b)

defining coefficient A, as analogous to A., (Al13b). Then, combining (A9b),
(A13B), (AlY) and (A30b) leads to the fluid influence factor in (7a), which is very
similar to that derived by Budiansky and O*Connell {1980).
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(1978, 1979); we consider first the case of cracks only. The elastic compliance
tensor M, of a transversely isotropic body may be written as a two-dimensional
symmetric matrix M, following the usual Voigt recipe:

(o) -4 1
Ey; \Eyy  2pes E;

1 1
E, E;
1
E;s
M= . (Ala)
1
Hag
1
Haq
1
Hss

Only the non-zero elements of the upper triangle are shown. There are five inde-
pendent elastic compliances.

If the anisotropy is caused by parallel cracks lying in the 3-plane of an isotropic
solid, then the only strain components affected by the cracks have subscripts 13, 23
and 33 (the last only when the stress is also 33). In this case, (Ala) reduces to the
special form

[1/E, —vJE, —v/E, 2
1/E, -v/E,
1/E
M= s {Alb)
1/
/i
L 1/u, |

which has only four independent elastic compliances, two of which are shown as
the elastic moduli E, and g, of the uncracked solid. Its Poisson’s ratio v, has the
usual connections with the isotropic solid moduli:

L_E_ _1_E
T, 2 6K,
The reduction in degrees of the freedom (from 5 to 4) represented by (Alb) results

in a constraint among the five elastic moduli, independent of any particular model
for the cracks, so long as they are thin and parallel. This constraint may be written

(A2)
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