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Reflection seismology over azimuthally anisotropic media 

Leon Thomsen* 

ABSTRACT 

Recent surveys have shown that azimuthal anisotropy 
(due most plausibly to aligned fractures) has an impor- 
tant effect on seismic shear waves. Previous work had 
discussed these effects on VSP data; the same effects are 
seen in surface recording of reflections at small to mod- 
erate angles of incidence. The anisotropic effects one dif- 
ferent polarization components of vertically traveling 
shear waves permit the recognition and estimation of 
very small degrees of azimuthal anisotropy (of order 2 1 
percent), as in an interferometer. Anisotropic effects on 
traveltime yield estimates of anisotropy which are 
averages over large depth intervals. Often, raw field 

data must be corrected for these effects before the reflec- 
tors may be imaged; two variations of a rotational algo- 
rithm to determine the “principal time series” are 
derived. Anisotropic effects on moveout lead to abnor- 
mal moveout unless the survey line is parallel to the 
fractures. Anisotropic effects on reflection amplitude 
permit the recognition and estimation of anisotropy 
(hence fracture intensity) differences at the reflecting 
horizon, i.e., with high vertical resolution, 

INTRODUCTION 

It has become apparent over the last several years that most 
upper-crustal rocks are azimuthally anisotropic to some 
degree. Crampin (1984a) and references therein provide a good 
review of such evidence, evidence taken mainly outside the 
context of exploration seismology. Crampin (1984b, 1985a) 
provides a clear account of the importance of azimuthal an- 
isotropy to exploration and its effects on vertical seismic pro- 
file (VSP) data. The emphasis on subsurface data was inten- 
tional, as “the surface imposes its own anomalies on the polar- 
izations of the incident shear wave. This makes analysis of 
anisotropy-induced polarization anomalies particularly difli- 
cult at the free surface” (Crampin, 1985a). The physical rea- 
sons for this difficulty are (Crampin, 1984b) that a shear body 
wave incident upon a free surface at an angle greater than the 
first critical angle [= sin ’ (V’JV,) z 35 degrees] induces 

complicated phase and amplitude characteristics in the reflect- 
ed waves. Even at lesser angles, within the “shear-wave 
window” where most exploration surface reflection data are 
acquired, there are mode conversions (SF-P) which complicate 
the analysis except at normal incidence. Crampin (1985a) 
notes that “these disturbances are usually much less near ver- 
tical incidence but even here, shear waves [at the surface] 
may be disturbed if there are low-velocity layers or any local 
irregularities.. .“- 

A series of papers presented at the 1986 SEG Convention 
(Thomsen, 1986b; Rai and Hanson, 1986; Lynn and Thomsen, 
1986; Alford, 1986b; Willis et al., 1986; and Martin et al., 
1986; cf., also Alford, 1986a, and Alford et al., 1986) provided 
arguments and data to show that these difficulties at the free 
surface may be overcome by appropriate data acquisition and 
analysis techniques. Taken as a group, these papers assert that 
the effects of azimuthal anisotropy on surface shear-wave (S- 
wave) data are profound and that the implications of the ef- 
fects are far-reaching. This paper presents the arguments of 
Thomsen (1986b); the full texts of the other papers will appear 
in due course. 

Some of the conclusions reached herein are very broadly 

applicable to any uniform azimuthally anisotropic medium (of 
any symmetry and stemming from any physical cause) and can 
easily be generalized for vertical layering. However, some of 
the specific results are valid only for media with a single hori- 
zontal axis of rotational symmetry. These employ the equa- 
tions for transverse isotropy, but with angles measured from 
the horizontal symmetry axis. Because this is a useful tirst- 
order model for discussing azimuthal anisotropy, the casual 
use of the term “transverse isotropy” to mean, in fact, “verti- 
cal transverse isotropy” (Crampin, 1986) is ambiguous. In this 
paper, media with a vertical axis of rotational symmetry (e.g., 
shales, thin-bed sequences, etc.) are called “azimuthally iso- 
tropic.” Use of the term “anisotropy” to mean only this spe- 
cial case, as for example in Thomsen (1986a), should no longer 
be accepted. 

Finally, some of the results below are valid only for that 
subclass of horizontal transverse isotropy in which the an- 
isotropy is due to a single set of aligned, vertical, circular flat 
cracks. While preferentially aligned, near-vertical cracks are 
indeed the most plausible physical cause of azimuthal an- 
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isotropy (Crampin, 1985b; Crampin and Atkinson, 1985) 
most of the present results do not rely on the details of this 
model. Where the results below have restricted generality, that 
is indicated at the appropriate place. Nonetheless, it is ex- 
tremely useful to carry, throughout the discussion, the mental 
example of aligned vertical cracks and the heuristic analogy 
(Thomsen, 1986b) of the deck of cards. 

As a prelude to attacking realistic problems (involving 
many layers, structure, etc.), it is first necessary to understand 
the simplest problem which captures the essence of the issue, 
i.e., the “canonical” problem. For reflection seismology at the 
free surface over azimuthally anisotropic media, it is necessary 
to discuss, at a minimum (1) body-wave propagation in such 
media, (2) reflection of plane waves at a planar horizontal 
boundary, and (3) horizontal moveout of reflection arrivals 
along a receiver spread. 

It will develop that, due to the anisotropy, the propagation 
features (1) and (3) possess anomalies in traveltime which are 
stable, low-vertical resolution measures of average anisotropy 
over extended depth intervals, whereas, due to the anisotropy, 
the reflectivity (2) possesses anomalies in amplitude which are 
high-resolution measures of local anisotropy differences at the 
reflecting horizon. Hence, the features are complementary: the 
traveltime analysis helps one overcome the deleterious effects 
of azimuthal anisotropy (e.g., it helps one see past the frac- 
tures, in order to image the reflectors), whereas the reflection 
amplitude analysis helps one detect and locate the anisotropy 
(e.g., it helps one find and characterize locally fractured beds). 
Therefore, propagation effects (1) and (3) are discussed first, 
and the reflectivity (2) is discussed subsequently. 

BODY-WAVE PROPAGATION 

IN AZIMUTHALLY ANISOTROPIC MEDIA 

Body-wave propagation in azimuthally anisotropic media 
has been addressed thoroughly by Crampin (1981, 1984a), 
among others. Nevertheless, it is useful to restate some of 
these ideas in a form which is less general but more easily 
visualized and more directly relevant to the canonical problem 
at hand. In Figure 1 (a map view), the “fracture strike” is a 
heuristic device only; the discussion immediately following is 
valid for any azimuthally anisotropic medium. In the general 
case, the fracture strike direction is the direction of polariza- 
tion of the “fast” vertically propagating shear mode; cf. Cram- 
pin (1984a) and below. 

Consider that a conventional SH survey is run at an angle 
oblique to the fracture strike. Since most S-wave surveys in 
the past have been SH surveys, oriented without regard to 
possible azimuthal anisotropy, this is a simple model of past 
practice. Consider that the vectors shown are polarization 
(particle-displacement or particle-velocity) vectors correspond- 
ing to an impulsive source. Because the medium is assumed to 
be linear, convolution with a wavelet from a realistic source, 
or from crosscorrelation of vibrator signal and pilot, may be 
postponed until later in the analysis. Assume that a conven- 
tional stack of a CMP gather forms a trace which is an accu- 
rate surrogate for a normal-incidence, multiple-free, noise- 
reduced trace. Although this assumption is not one to be 
taken casually, the results of Alford (1986b) and Willis et al. 
(1986) suggest that it is acceptable in the present context. 
Hence, the discussion in this section applies only to vertical 
raypaths; in Figure 1, the rays are normal to the page. 

The conventional J”H survey has a cross-line source polar- 
ization and cross-line receivers. The cross-line source is de- 
signed to vertically radiate a shear wave with cross-line polar- 
ization. However, the equations of wave propagation in an 
azimuthally anisotropic medium (cf., Crampin, 1984a) assert 
that such a wave will(‘h&‘sopagate, even if the medium is 
only weakly anisotropic. The only shear waves which will 
propagate vertically in such a medium are those polarized in 
the principal directions intrinsic to the medium; i.e., parallel to 
the “fracture strike” and perpendicular to it. (Actually, in the 
general case, the polarizations are not exactly as just stated, 
nor are they exactly orthogonal to the propagation direction. 
However, for weakly anisotropic media, it is acceptable to 
ignore these complications.) Hence, the source vector, labeled 
SH in Figure 1, is vectorially decomposed by the medium into 
the two principal components shown, OS,, and OS,, parallel 
to the principal axes. The decomposition is entirely trigono- 
metric (no physical coupling factors, etc.). It occurs abruptly at 
the surface of the azimuthally anisotropic medium and does 
not change with further propagation in the medium, unless the 
medium itself is vertically inhomogeneous. 

Separate shear waves with the two orthogonal polarizations 
cun propagate vertically into the medium, each at its own 
speed. The wave with polarization perpendicular to the cracks 
can deform the rock easily because of the favorable orienta- 
tion of the zones of weakness (the cracks). Hence, this wave 
experiences a low (compliant) effective rigidity, and its velocity 
VL is slow. By contrast, the wave with polarization parallel to 
the cracks cannot take advantage of the zones of weakness, 
but must deform the untracked rock. Hence, this wave experi- 
ences a high (stiff) effective rigidity, and its velocity is higher 
(V,, > VJ. The wave with parallel polarization advances faster 
than the wave with perpendicular polarization, as each propa- 
gates vertically. This is shear-wave splitting (Crampin, 1985a), 
a manifestation of the anisotropy. 

It is useful to recall that elastic anisotropy means a depen- 
dence of elastic wave speed upon direction. The direction may 
be taken as either direction of propagation or direction of 
polarization. Each velocity (V,, I(, , V,) varies smoothly with 
the direction of propagation. By contrast, the variation of 
shear velocity with the direction of polarization is discrete: for 
a given direction of propagation, only two orthogonal polar- 
izations will propagate. Intermediate polarizations decompose 
vectorially into these principal components. 

If the shear-wave signal were a continuous sinusoid rather 
than an impulse, the interference between these two modes 
would yield an apparent single sinusoidal signal with elliptical 
polarization. That is, the shear wave would appear to twist in 
its polarization (like a corkscrew) as it advanced. However, the 
seismic wavelet is not a continuous sinusoid but is localized in 
time If it were a perfect spike, then each pure mode would 
also propagate as a spike, linearly polarized in the appropriate 
direction, and no elliptical polarization would be apparent. 
Instead, the signal would appear as two separated impulsive 
events. In the actual case of imperfect localization, the effects 
will be intermediate between these extreme cases. 

Returning to Figure 1, the two shear phases propagate ver- 
tically down and reflect independently from the horizontal 
reflector, with corresponding reflection coefficients R,, and R, 
If the anisotropy is very weak, and/or similar in the incident 
and reflecting media, then the two reflection coefficients will 
be similar. Furthermore, in the weak anisotropy case, the geo- 
metric spreading, attenuation, etc. will be similar for the two 
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modes. This is a common circumstance, as demonstrated by 
the data of Willis et al. (1986); the exceptional case is dis- 
cussed in the final section. In the common case, the largest 
difference in amplitude between the two returning waves will 
be due to the trigonometric factors discussed here. For clarifi- 
cation of these geometrical effects, the physical factors are 
ignored in Figures 1 and 2, i.e., the amplitudes of the polariza- 
tion vectors of the returning wave are then identical to the 
respective components of the source vector. However, the 
physical factors are retained in the mathematical development 
below. 

The receivers are, by convention, oriented cross-line and 
hence detect not the entire reflected wave, but only the cross- 
line component of each mode. Hence, the fast (11) mode arrives 
with an amplitude, as measured on the cross-line receiver (cf., 
Figure 2a), of 

2.2 
R,, sin’ eJ;,(t)*8 t - - , ( > 71 

where f;, (t) is a filter embodying geometric spreading, attenu- 
ation, etc. and the delayed Dirac (6) indicates a spike arriving 
from depth z with velocity 5,. 

A split second later, the slow mode (I) arrives, with appar- 

ent amplitude on the cross-line receiver (cf., Figure 2a) of 

R,Cos2ef,(t)*s t-g ( > i 
Hence, the receiver will detect two arrivals from a single reflec- 
tor rather than one arrival. The separation in time will be 

At = t, - t,, = t,, t, (-- > 1 
tll 

=f,,[(~~~)-l]=f,,(~-l)=~r,,. (1) 

The anisotropy, 

(14 

corresponds, in the special case of horizontal transverse iso- 
tropy, to the anisotropy parameter y defined by Thomsen 
(1986a). 

A wavelet w(t) of finite duration, convolved with the above 
impulse sequence, will yield the following signal on the cross- 

FIG. 1. Map view of the canonical reflection problem for an SH-wave survey oblique to the anisotropy. 
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line receiver: 

h @) = 
[ 

RI, sin* 6 S(t - t,,) *J;, (t) 

+ R, cos* 0 S(t - tJ *f, (t) 
1 

* w(t). (2) 

Here, the first subscript 2 on s indicates a cross-line (y) receiv- 
er; the second subscript 2 on s indicates a cross-line source. 

If the duration of the wavelet is comparable to the delay At, 
there will be complicated interference between the two arriv- 
als, which may substantially degrade the apparent quality of 
the data. This will happen even if the anisotropy is small, since 
the time delay [equation (l)] depends upon the traveltime 
itself. For example, if y z 2 percent, then at long times 
(t,, > 2 s) the time delay will be At > 40 ms, i.e., will be com- 
parable to the duration of the main lobe of a typical wavelet. 
Alford (1986b) analyzed this effect and suggested that it is a 
principal cause of erratic and unpredictable S-wave data qual- 
ity worldwide. Alford’s conclusion was confirmed by Willis et 
al. (1986). Also, Rai and Hanson (1986) confirmed this analysis 
in a well-controlled laboratory context. 

If in-line receivers are also deployed, then the rest of the 

signal may be recovered. Figure 1 also shows the trigono- 
metric factors which decompose the returning signal into the 
in-line direction. Again, two arrivals are recorded, with equal 
and opposite amplitudes, separated by the same time delay as 
the cross-line arrivals (Figure 2b): 

s12 (t) = R,, sin (3 cos 8 6(r - t,,) *f;,(t) 

- R, sin 8 cos 8 i5(t - tJ *f, (t) 
1 
*w(t). (3) 

Recall that, in a survey over flat-lying isotropic media with a 
cross-line source, the in-line receiver records a null trace. This 
isotropic result may be recovered from the present anisotropic 
analysis by realizing that, in the isotropic limit (y = 0), the 
time delay vanishes and the reflectivities and propagation fil- 
ters are identical so that the two in-line arrivals exactly cancel 
each other. In this same limit, the cross-line signal (2) also 
reduces to the isotropic result, since [cf., equation (2)] 

sin* 8 + cos* e = 1. 

A nonzero in-line signal from a cross-line survey in flat-lying 
geometry is a sensitive detector of even very weak azimuthal 

(a) Cross-line (matched) receiver (b) In-line (mismatched) receiver 

At I 
Fill sin% 

t 

RI co&3 
c 

-RI sin0 co86 

RII sln6J co80 
c 

FIG. 2. Apparent reflection spike series for the canonical reflection problem of Figure 1. One reflector yields two spikes 
on both (a) the cross-line receiver and (b) the in-line receiver. 
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anisotropy (Alford, 1986b). Both shear modes propagate 
through the same rock, so that small differences in their arriv- 
al times can be easily detected, in a relative sense, as in an 
interferometer. Velocity differences of l-3 percent have a sub- 
stantial deleterious effect on the data and may be measured 
quantitatively (see below) even though the uncertainty in 
either of the absolute velocities may be much higher than l-3 
percent. By contrast, P-wave anisotropy in azimuthally iso- 
tropic media must be determined by comparison of travel- 
times over different raypaths (vertical and oblique), wherein 
refractive ray bending causes effects of comparable size. 
Hence, P-wave anisotropy in azimuthally isotropic media is 
not susceptible to such sensitive detection techniques. 

It is easy to see that if a conventional SV survey (with an 
in-line source and receiver) were run over the same line, there 
would be similar splitting effects, although with different trig- 
onometric relationships. The in-line and cross-line compo- 
nents, respectively, yield signals 

s,,(t) = 
[ 

R,, co? 8 ar - t,,)*1;,(t) 

+ R, sin2 0 h(t - tJ *f, (t) 1 * w(t); (4) 

and 

s,,(t) = R,, sin 0 cos 8 h(t - t,,)*f;,(t) 

- R, sin 0 cos I3 s(t - tL)*fi(t) 1 *w(t). (5) 

These results may easily be generalized to the multilayer case, 
if the principal directions in each of the layers are oriented the 
same. In this case, there is no further splittin at Steeper hor- 
izons of the two transmitted shear modes, an J! kach, &ector is 
represented in the data by two pulses. The variable degree of 
anisotropy within each layer is encoded in the time separation 
of corresponding reflection events. Equations (2)-(5) may be 
generalized to treat this case with the replacements 

RI, 80 - t,,)+ rll (t) 

and 

R, s(t - t,)+ rI (0, 

where r,,(r) and rl (t) are the principal reflectivity series (one 
spike per reflector, ignoring multiples) corresponding to the 
fast and the slow modes, respectively. By the previous argu- 
ments, one expects rl (t) to be, to a good approximation, just a 
stretched and scaled version of r,,(t). The stretching factor y 
will, in general, be time-variant. The time delay between corre- 
sponding reflectors is, generalizing equation (I), 

A@,) = Y(t,,)t,, 3 (6) 

where P(t,,) is the average value of anisotropy from t = 0 down 
to t = t,, Local values’of anisotropy, denoted by y(t,,) without 
the bar, may in principle be determined by an appropriate 
differentiation of F(t,,); but in practice the procedure may not 
be very stable. 

If different layers possess different orientations of an- 
isotropy, then in general each mode will split again at each 
such interface and each reflector will be represented in the 
data by many reflection spikes. Repeated splitting does not 
appear to be a common circumstance, given the success (Willis 

et al., 1986) of the simple model above. This apparent uni- 
formity of orientation of anisotropy, independent of depth, is 
readily justified (e.g., Crampin and Atkinson, 1985), since pref- 
erential crack alignments are controlled by preferential stress 
alignments and the stress direction is uniform on a regional 
basis and uniform in depth, except within areas of intense 
tectonic deformation. 

An important exception to the previous argument exists, 
which is contradicted by neither the seismic data (Willis et al., 
1986) nor the physical argument (e.g., Crampin and Atkinson, 
1985). This exception is the possibility of beds which retain, 
even in the current stress regime, cracks created by a paleo- 
stress with different orientation that remain open despite the 
current unfavorable stress through an exceptional mechanism. 
An example of such an occurrence is reported by Lynn and 
Thomsen (1986); the exceptional mechanism was partial pre- 
cipitation of quartz in the cracks while they were held open by 
a previous stress regime, so that subsequent evolution of the 
stress field could not close the cracks. 

If the bed with exceptional orientation of anisotropy is thin, 
then each of the reflection spikes in r,,(t) and r,(t) is replaced 
by a quadruplet of closely spaced spikes corresponding to 
additional splitting of each mode on transmission each way 
through the exceptional bed. However, if the product (thick- 
ness times anisotropy) of the exceptional bed is sufficiently 
small, then the quadruplet will be blurred by convolution with 
the wavelet, and the splitting will not be detectable with 
traveltime methods. If the product is not small, then that fact 
will be revealed by failure of the algorithm defined below. 

DETERMINATION OF THE PRINCIPAL time SERIES 

Crampin (e.g., 1985b) has emphasized the utility of polariza- 
tion diagrams in the analysis of these split shear arrivals. 
While such diagrams undoubtedly lead to important insights, 
the details of the polarization trajectories do depend strongly 
upon the shapes and relative amplitudes of the two wavelets 
and the delay between the two pulses. Further, the study of 
polarization diagrams lends itself most easily to the detailed 
investigation of particular events, rather than to summary in- 
vestigations of entire seismic sections. 

The analysis technique of Alford (1986b) offers a comple- 
mentary set of advantages and disadvantages. Here a different 
derivation of that algorithm is presented, based upon the 
simple model above. The problem is to derive from the data 
sji(t), which contain two events per reflector, the “principal 
time series” 

sII (t,,) =1;, * w * rll 

and 

si(t,) =f,*w*r,, 

containing one event per reflector. Both s,, and sI should be 
easier to interpret than the original data, since each is free of 
the interference between the two principal modes of S-wave 
propagation. Furthermore, the deference between correspond- 
ing events on S,,(Q) and s,(t,) contains information about 
azimuthal anisotropy which is confounded in the original 
data. 

Given a complete data set (cross-line source and in-line 
source, both into cross-line and in-line receivers), the solution 
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of equations (2)-(5) is straightforward: 

s11 (r) = cos’ 8 s, i(t) + sin 0 cos 0 s,,(t) + siz (t) 1 + sin’ 8 sZ2(t); (7a) 

sl(t) = sin2 8 s,,(t) - sin 8 cos 8 
[ 
s,,(t) + s,,(t) 1 

+ co2 e s22 (t). (7b) 

The same analysis produces two complementary equations: 

0 = sin’ 8 s,,(t) + sin 8 cos 8 sll(t) - s,,(t) 1 - cos2 8 s,,(t); (84 
0 = sin’ 8 si2 (t) + sin 8 cos 8 

[ 
s1 l(t) - ~2~ (t) 1 

- CO? 8 s21(t). W-9 

Alford (1986b) derived the results of equations (7) and (8) from 
a different point of view. Examination of equations (8) shows 
that both equations cannot be satisfied unless the original 
data on the mismatched receivers are identical, i.e., 

s12(t) = s210). (9) 

Although equation (9) is trivially satisfied by the model, it is 
not necessarily satisfied, by the data and constitutes a useful 
quality control; unless equation (9) is satisfied by the data to 
acceptable precision, the model-driven processing (7) is not 
justified. 

If equation (9) is satisfied, equations (8a) and (8b) are identi- 
cal and constitute a determination of the unknown orientation 
angle 8 (Alford, 1986b). In practice (Willis et al., 1986), equa- 
tions (7a), (7b), (8a), and (8b) are calculated for a sequence of 
values of 8; the value chosen for 8 is that for which the linear 
combination of data on the right-hand side of equation (8) is 
approximately zero at all times for a suite of adjacent CMP 
points. This angle 8 then defines the weights for linearly com- 
bining the data sji(t) into the principal time series s,,(t) and 
.sl (t). as in equation (7). 

If the complete suite of seismograms s,i, s2ir s22r siZ is not 
available, the principal time series may still be recovered, 
albeit less robustly. If the orientation angle 8 is known, any 
two of equations (2)-(5) may be used to calculate the two 
unknowns s,,(t) and sI (t). If 8 is not known a priori, a pro- 
cedure similar to that outlined above may be implemented: 
solving any two of equations (2)-(5) with several values of 
fixed 8 we choose that solution for which the resulting sl(t) 
looks like a stretched version of s,,(t) at all times and for a 
suite of adjacent CMP points. For example, given a conven- 
tional cross-line source and both cross-line and in-line receiv- 
ers, the solution [from equations (2) and (3)] is 

and 

s,,(t) = s22 (t) + cot 8 si2 (0 (lOa) 

sI (t) = s22 (t) - tan 8 s12 (t). (lob) 

Equations (10) represent just a rotation of the data, followed 
by an angle-dependent scaling. If 8 = 0 or 8 = x/2 in some 
particular case, equations (10) are unstable. However, this case 
will be self-evident, since the mismatched receiver will record 

only noise. This method [single-source multiple receivers, 
equations (lo)] was used by Martin et al. (1986). 

By use of equations (7) or equations (10) on each set of 
traces along a survey line, the partial redundancy of conven- 
tionally acquired surface reflection data is used to overcome 
the problems (Crampin, 1984b, 1985a) which are potentially 
associated with surface data. 

NORMAL AND ABNORMAL MOVEOUT 

It is well-known in the context of azimuthal isotropy that 
the horizontal moveout of reflected energy from flat-lying ge- 
ometry is abnormal. That is, the moveout velocity is not equal 
to the vertical velocity, even in the one-layer case. Intuition 
suggests that, in the present case of azimuthal anisotropy, the 
moveout may also be abnormal. To simplify this discussion, 
only two special cases are considered here, corresponding to 
survey lines parallel to one or the other principal directions of 
anisotropy. At other azimuths, the waves are split and the 
situation is much more complex. 

The abnormality of moveout clearly depends upon the 
angular variation of velocity. Hence, in this section it is not 
possible to maintain the generality of the previous section; the 
following results are restricted to the case of horizontal trans- 
verse isotropy. The results are cast in terms of the three mea- 
sures of anisotropy (E, 6, 7) defined by Thomsen (1986a) and 
are restricted to the case of weak anisotropy. Under these 
assumptions, the departures of the rays from the sagittal plane 
may be neglected (Backus, 1965). 

First consider a survey line running parallel to the strike of 
the symmetry planes of the medium, i.e., parallel to the frac- 
ture strike of Figure 1. Since by assumption all directions of 
propagation in this plane are equivalent, there is no angular 
variation of velocity and moveout is normal. That is, moveout 
velocity is identical to vertical velocity for each type of survey: 
P, SV, and SH. (Of course, the vertical velocity for the SV 
survey is faster than that of the SH survey, as discussed in the 
section on body-wave propagation.) 

Consider next a survey line running perpendicular to the 
strike of the symmetry planes, i.e., perpendicular to the frac- 
ture strike of Figure 1. The moveout is nonhyperbolic and, in 
general, its description requires more than one parameter. To 
simplify the discussion, only the short-spread limit is con- 
sidered here; the moveout velocity is defined by 

4x') V2 = lim - mo 
[ 1 x-0 4t2) ' (11) 

for each wave type, where x is offset and t is arrival time
Modifying the arguments of Thomsen (1986a) to this geom- 

etry, it is easy to show that 

for a P-wave survey, 

V,,(P) = V&(1 - 8); (12a) 

for an SV-wave survey, 

I/,,(SV) = I$ 1 - Y + (v,0/$)2(s - 8) 
[ 1 ; (12'4 

for an SH-wave survey: 

V,,(SH) = V, = “i, (1 - y). (12c) 
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In these expressions, VP0 is the vertical P-wave velocity; in the 
special case where the anisotropy is caused by vertically 
aligned cracks, VP0 is also the intrinsic velocity of the un- 
cracked rock. y, and V, are the vertical shear speeds for po- 
larization along the principal directions, as in the previous 
section. In the special case of vertical aligned cracks, 7, is the 
intrinsic shear velocity of the untracked rock. 

E, 6, and y are nondimensional measures of anisotropy, de- 
fined by Thomsen (1986a), which reduce to small numbers in 
the limit of weak anisotropy and which were chosen to sim- 
plify equations such as these. In general, these are all indepen- 
dent numbers, but in the special case of aligned vertical 
cracks, they are all dependent upon the crack density. Since 6 
and E are independent numbers, it can happen for some aniso- 
tropic media that 6 < E. In fact, for the special case of ani- 
sotropy due to aligned vertical cracks, this is indeed the case. 
For this special case one can show that the combination 

(13) 

for plausible values of the underlying parameters. Hence, in 
this case equations (12b) and (12~) yield 

(14) 

and equations (12b) and (12~) may be arranged to show the 
inequality 

V,,(W) = V, < V,,(SV) Z I$. (15) 

This inequality sequence for moveout velocities may be con- 
trasted with the corresponding sequence for the vertical veloc- 
ities of the two shear modes. For the present orientation of the 
survey line with respect to anisotropy, the vertical velocities 
are 

for a P-wave survey, 
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for an SV-wave survey, 

v,,,,(SV = v,, (16b) 

and 

FIG. 3. 3-D cross-section of the canonical reflection problem 
showing vertical variation in anisotropy. 

for an SH-wave survey, 

v,,,, (SW = y, > 

yielding an inequality sequence 

(16~) 

V,,,, (SV) = V, < V.,,,(SW = y, (17) 

Comparison of the sequences (15) and (17) shows that the 
order of velocities is reversed; for moveout velocities, the SH- 

wave survey is slower; while for the vertical velocities, the 
SV-wave survey is slower. The SV reflection comes in later (at 
vertical incidence) but moves out faster. 

These results are always true if the anisotropy is due to a 
single set of vertically aligned cracks which is adequately mod- 
eled by the theory. For more general situations, with many 
layers and/or with vertical transverse isotropy, the results may 
not be true but are always plausible. 

REFLECTIVITY 

Consider now the problem of reflection of plane waves at 
the planar boundary between two anisotropic media. This 
problem was treated in great generality by Keith and Crampin 
(1977). Since then, quite general modeling codes for wave 
propagation in azimuthally anisotropic media have become 
available (Crampin et al., 1986, Gajewski and Psencik, 1988). 
Nonetheless, in order to expose the critical ideas, it is useful to 
sketch the development of a less general theory, which still 
contains the essence of the problem. Consider the problem 
illustrated in Figure 3. of a plane wave incident upon a planar 
boundary between two transversely isotropic media. In the 
example, the upper medium (e.g., a shale) has a vertical sym- 
metry axis; the lower medium (e.g., a sandstone permeated 
with vertical aligned cracks) has a horizontal symmetry axis 
running at an oblique angle to the line of survey. 

In either medium, the wave equation has three plane-wave 
solutions, one quasi-longitudinal, one transverse, and one 
quasi-transverse. The solutions are given, for example, by 
Daley and Hron (1977) whose notation is followed here. The 
index v is used to distinguish the various waves: 

v=o incident wave (P, S,, , or S,); 

v=l reflected P-wave; 

v=2 transmitted P-wave; 

v=3 reflected S,-wave; 

v=4 transmitted S,-wave; 

v=5 reflected S,,-wave; 

v=6 transmitted wve; 

so that even values for v indicate a downgoing wave, odd 
values for v indicate an upgoing wave. 

All of the difficulties in the reflection-transmission mode- 
conversion problem are geometric. The waves are easily ex- 
pressed in the natural (intrinsic) coordinate frame of each 
medium, whereas the boundary conditions (which determine 
the energy partition) are easily expressed in the survey- 
interface coordinate frame. This conflict does not arise in deal- 
ing with isotropic media. 

In Figure 3, the intrinsic coordinate frame (primed) of the 
lower medium is related to the survey frame (unprimed) by 
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two sequential rotations: a clockwise rotation by 0 about y’, 
followed by a clockwise rotation by r-2 about the new x. The 
corresponding rotation matrix is 
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The most conventient such frame is defined so that the y” axis, 
while remaining in the invariant (x’ - y’) plane, is perpendicu- 
lar to the wave vector k, which lies in the survey (x - z) plane. 
In this frame, the polarization eigenvector g6 for the transmit- 
ted S,, mode is trivial: 

(18) 

Any vector g’ expressed in the primed frame may be trans- 
formed to the unprimed frame through operation by Q: 

g = Qg’. (19) 

Similarly, a tensor expressed in the primed frame may be 
transformed to the unprimed frame using Q. For example. in 
the primed frame the intrinsic elastic modulus tensor C” ’ of 
the medium has the simple form of the hexagonal symmetry 
class (cf., e.g., Nye, 1957; Thomsen, 1986a). However, in the 
survey frame, c”) is 

where T indicates the transpose. In expanded notation, equa- 
tion (20a) is written as 

c,;,,, = c’,;;, Rmi n”j R,, R,, ) GObI 

with summation over repeated indices. C(‘) has nonzero com- 
ponents C$‘, Z and Ckzsr,, and other effects of the rotational 
mixing. (Use of the matrix C,, in place of the tensor Ci,k, may 
lead the unwary into error.) 

To complicate matters, any other coordinate frame related 
to the primed system by a rotation about the symmetry axis 
(2’) is also a valid intrinsic coordination system for this (trans- 
versely isotropic) lower medium (Figure 4). Any vector g” ex- 
pressed in such a system may be transformed to the primed 
system by a rotation about the symmetry axis by an arbitrary 
angle b: 

FIG. 4. Detail of Figure 3 showing expanded relationship of 
coordinate frames. 

g’;,=y”=(O, 1,O). (22) 

This eigenvector is transformed to the primed frame with 
equation (21), 

gb = (sin Pbr cos P6, O), 

and to the survey frame with equation (19) 

g, = (cos 8 sin fig, sin 8 sin &, -cos &). 

The orthogonality condition, g, . k, = 0, then determines the 
required angle p, in terms of the incidence angle a, and the 
orientation 8 of the survey line: 

cot (j6 = -tan a6 cos 0. (23) 

Similar arguments define the transformed eigenvectors g, and 
g, of the other two modes in the survey coordinate frame. 

With this notation, the rest is straightforward. The bound- 
ary conditions are continuity of three components of displace- 
ment and continuity of three components of stress at z = 0. 
The displacement boundary conditions may be written togeth- 
er as 

Et-l)‘u,=u,, (24) 
Y= 1 

where the u, are the plane-wave displacements from Daley 
and Hron (1979). with the obvious typographical errors cor- 
rected. The factors (~ 1)’ bring all outgoing waves to the left 
side of the equation. Of course, the solutions for v = 2, 4, 6 
must be transformed into the survey coordinate frame using 
equations (23). (21). and (19). 

The stress boundary conditions may be written together as 

6 

cc-lnJ,J(U,) - G,~(hJ> i = 1, 2, 3, (25) 
\=I 

where oEJ (II,.) is a component of stress due to the v”’ mode: 

The subscript 3 selects those components of stress applied on 
the interface plane (-_ = .x~ = 0). Of course, Cc’) = C’“’ = Ct6’ 
is the elasticity tensor (20) of the lower medium, expressed in 
the survey frame. 

The six equations (24) and (25) constitute six equations in 
six unknowns, the amplitudes of the six outgoing waves, nor- 
malized to LJo. Because of the nonzero values of C\‘d,, and 
C’2’ 

23, 3, in general all six are coupled together. As in the iso- 
tropic case, no solution is possible unless all frequencies are 
equal or unless all horizontal wavenumbers are equal. This 
last requirement determines the incidence (departure) angles a, 
through a generalized Snell’s law: 

sin a sin a ---c,!,=+ 
v, ((I,,) kV(U,.)’ 

v = 1, _._, 6, (27) 

where p is the “wavefront parameter,” The phase velocities V, 

with their angular dependence are given by Daley and Hron 
( 1979). 
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The six linear equations in six unknowns possess a solution 
for which the d component of each wave vector k, is zero, i.e., 
all wave vectors lie exactly in the sagittal plane. Therefore, by 
the uniqueness theorem, this solution is the only one. The 
energy-flux vector departs from this plane in general (cf., 
Thomsen, 1986a and prior discussion), but for weak ani- 
sotropy, the elTect is small. 

The solution to the six equations is algebraically cumber- 
some and is best left implicit. Figure 5 illustrates numerical 
results for incident P-waves and SH-waves at various inci- 
dence angles with parameters appropriate to the case of Lynn 
and Thomsen (1986). For P-wave reflectivity, there is, of 
course, no azimuthal dependence at normal incidence, and 
only modest azimuthal dependence at oblique incidence. This 
result verifies the common experience that P-wave amplitudes 
of stacked traces at the tie points of crossing survey lines are 
independent of azimuth, even though most sedimentary sec- 
tions are azimuthally anisotropic (Willis et al., 1986). 

By contrast, the SH reflectivity (cross-line source, cross-line 
receiver) shows a strong azimuthal dependence at all angles of 
incidence. This azimuthal variation will remain evident in the 
stacked traces, making a clear diagnosis of the presence of 
azimuthal anisotropy at the reflecting horizon. The nature of 
this dependence is clarified by examination of the special case 
of the solutions to equations (24) and (25) corresponding to a 
normally incident SH-wave polarized along one or the other 
principal axes of anisotropy. For the case where the survey 
line is perpendicular to the cracks, the normal-incidence SH 
reflectivity from equations (24) and (25) reduces to a familiar 
form 

RSH(O = x/2) = - P2 1/;12 - PI “sl 

P2 $2 + PI 5, ’ 

where Vs, is the vertical shear velocity in the upper medium. 
[Note the minus sign on the right side of equation (28). This 
sign convention is described and justified by Aki and Richards 
(1980). The present results reduce to theirs in the isotropic 
limit.] 

For the case where the survey line is parallel to the cracks, 
the normal-incidence SH reflectivity is 

P2 “12 - P,Ys’,, 

RsH(e = O) = p2 I”_2 + p1 v,, 
(294 

_ P2 y,zcl - Yt) - Pi %1 

Pr & (1 - Y2) + PI v,, 
(29b) 

If the difference in shear impedance is small, equation (29) 
becomes 

R,, (0 = 0) = R,, (R = n/2) + +y2. (29~) 

Of course at normal incidence, an SV (in-line) source has a 
reflectivity 

so that equation (29~) becomes 

R,,(8 = 0) = R,,(B = 0) + +y2. (30) 

It is clear that if the upper medium is also azimuthally aniso- 
tropic with its principal axes oriented in the same direction as 
those of the lower medium, then equations (28) and (29a) may 
be straightforwardly generalized by replacing V’s, by I$, or 

VL1 as appropriate. Then equations (29~) and (30) became 

R,, (e = 0) = R,, (e = n/2) + icy, - Vi) (31a) 

= R,,(e = 0) + +(r, - ~1). (31b) 

In this case intermediate orientations of the survey line will 
produce shear-wave splitting. The present analysis then 
applies to the principal reflectivity series r,, (1) and rl(t), so 
that equation (3 1 b) generalizes to 

r,(t,) = rll(rll) + !CY, - YA. (31c) 

It is clear from equations (31) that if a sequence of azimuthally 
anisotropic layers (with axes oriented alike) has differing 
parallel shear impedance in each layer but identical ani- 
sotropy [y(z) = y1 = y2 for all z], then the reflectivity will not 
show azimuthal variation. Consequently, the principal time
series s,,(t) and s,(t) will show comparable reflection ampli- 
tudes. sl(t) will appear as a stretched, unscaled version of 

s11 (r). 
If v(z) is a smooth function of z, this last statement will be 

almost true. This is a common situation, as shown by the 
relative similarity of s,, (t) and sI (t) in many areas (cf., Alford, 
l986b, and Willis et al., 1986). 

Even given this generality, there will be certain reflecting 
horizons where yZ # *;, and where the principal time series 
show a definite difference in amplitude. Locally, s,(t) will be 
scaled, as well as stretched, relative to s,,(t). Such a case con- 
stitutes a detection with high vertical resolution of a difference 
in,loca[,.anisotropy, y2 - yi. If the anisotropy is due to near- 
vertical aligned cracks or joints (the most plausible physical 
cause, cf., Crampin and Atkinson, l985), this difference be- 
tween s,(t) and s,,(t) constitutes a detection from the surface, 
with high vertical resolution, of intensely fractured beds at 
depth. 

This sort of detection was reported by Lynn and Thomsen 
(1986). In that case, the orientation of the cracks in the in- 
tensely cracked beds also differed from the orientation of 
cracks in the overlying beds, 
the present, simpler analysis. 

but the principle is the same as in 
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FIG. 5. Numerical example of reflection coefficients as func- 
tions of azimuth and incidence angle. 
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SUMMARY 

This discussion, in conjunction with previous work by 
Crampin and his coauthors and by Alford, Lynn, Rai, 
Hanson, Willis, Rethford, and Bielanski, has established that 

(1) Shear waves traveling nearly vertically in azi- 
muthally anisotropic media are noticeably affected by 
such anisotropy, even when the anisotropy is very weak. 

(2) The effects are visible in conventionally acquired 
surface S-wave data taken in typical exploration con- 
texts; the massive redundancy of conventional acqui- 
sition techniques with closely spaced CMP gathers 
overcomes the difficulties potentially caused by the free 
surface. 

(3) Because S-waves of both polarizations travel 
through very nearly the same body of rock but at differ- 
ent velocities, a proper comparison of multiple- 
component records can reliably reveal very small veloci- 
ty differences, as in an interferometer. 

(4) The anisotropy becomes noticeable in the data at 
record times such that the ratio of the wavelet duration 
to the traveltime becomes comparable to the ani- 
sotropy. e.g., y as small as 1 percent may be detected. 
Anisotropy may seriously degrade apparent record 
quality, unless properly corrected for: 

(5) Resolution,of raw data into the two principal time
series allows one to remove the interference between the 
two shear modes, and, by seeing past the fractures, to 
image the reflectors. This operation also determines the 
orientation of the anisotropic axes, and hence, with ad- 
ditional assumptions, the orientation of the fractures 
and the principal stresses. 

(6) The time difference between corresponding events 
on the two principal time series provides a robust mea- 
sure, poorly resolved in time of average anisotropy over 
extended depth intervals. 

(7) Moveout velocities for reflection arrivals\ over azi- 

muthally anisotropic media are abnormal unless the 

survey line is parallel to the fractures, or, more gener- 

ally, parallel to a vertical invariant plane of the azi- 
muthal anisotropy. 

(8) Comparison of reflection amplitudes of corre- 

sponding events on the principal time series provides a 

measure, highly resolved in time of local anisotropy 

differences; i.e., it allows one to see and characterize the 
fractures. 
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