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Abstract

The exact solution to the problem of qSV triplication in homogenous transversely isotropic media has been long known, but

the result is algebraically complex and is seldom applied in practice. We present an appropriate approximation (not assuming

weak qSV-anisotropy) that simplifies the conditions for the onset of off-axis triplication as anisotropy is increased, identifying

the anisotropy parameter r as the controlling parameter. It follows that commonly reported surface-seismic P-wave move-out

measurements imply that many formations in the earth’s sedimentary crust support off-axis qSV triplications. For typical Vp/Vs

velocity ratios and a horizontally stratified earth, however, off-axis qSV triplications appear to only occur for shear-wave

incidence angles too far from the vertical to be sampled by surface-seismic converted-wave survey geometries.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The phenomenon of ‘‘qSV triplication’’ has been

well known, especially for transversely isotropic me-

dia, since the time of Rudzki (1911). Rediscovering

this early work, Helbig (1958) and Dellinger (1991)

presented inequalities (of sixth order in the elastic

moduli C11, C33, C13, C55) that give the conditions

under which such triplications occur for homogenous

transversely isotropic media. They found that tripli-

cations could occur for qSV waves propagating at

three different angles to the axis of symmetry: parallel

to the symmetry axis, perpendicular to the symmetry

axis, or at an angle inbetween, and presented an

inequality governing each case. The only algebraically

difficult case is the last of the three, ‘‘off-axis’’

triplication.
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With the problem apparently already completely

solved, there seems to be little to add, so the purpose

of this present contribution needs to be stated clearly.

The inequality governing off-axis triplication is alge-

braically complicated enough that it is not possible to

understand it intuitively. Unfortunately, it is also the

case of geological significance. In particular, (1)

although it is straightforward to categorize whether a

particular case is triplicating off axis or not, it is not

easy to see how to generalize any one case to others;

instead, one must recalculate each case individually.

(2) It is easily understood that triplications is trans-

versely isotropic media occur only when the ‘‘anisot-

ropy is sufficiently large’’, but no simple specific

understanding of what this means has been estab-

lished. In particular, it is not clear just what meas-

ure(s) of anisotropy should be large (and how large),

in order for the phenomenon of off-axis triplication to

occur. (3) In order to apply the extract theory, one

must measure at least three elastic moduli; this is only
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possible in a laboratory setting. In a (geophysical)

field setting, ordinarily only certain combinations of

elastic parameters can be measured; it is an incom-

plete set which precludes the calculation of the un-

derlying elastic moduli, so that the theory may not be

applied in such a context. (4) When we measure large

P-wave anisotropy, it is not clear whether or not this

implies that the same material should support qSV

triplications. (5) Because of these characteristics of the

exact solution, the whole subject remains an esoteric

one, and nobody knows whether or not the phenom-

enon may have some utility, for example, in physical

characterization of subsurface rock formations.

In this paper, we abandon the exact solution in

favor of an approximate solution, which turns out to

be so simple that it is easily understood intuitively,

and leads easily to generalizations of any particular

case. It turns out that the controlling anisotropy

parameters are familiar from other contexts and can

be deduced from other measurements not involving

qSV triplication explicitly. Through use of this ap-

proximation, we hope that the newly accessible phe-

nomenon may be found useful in applied studies.
2. Statement of the problem, and the exact solution

Let V(h) give the phase velocity as a function of

phase propagation angle h for a wave mode in a

homogenous anisotropic medium. The medium is

assumed to be transversely isotropic, with a symmetry

axis at h = 0. Then, for a given plane wave propagat-

ing at an angle h to the symmetry axis, the associated

ray propagation direction is given by

/ ¼ h þ arctan
dV ðhÞ=dh

V ðhÞ

� �
; ð1Þ

and the ray propagates in that direction with a ray

velocity v given by

v2ð/Þ ¼ V 2ðhÞ þ ðdV ðhÞ=dhÞ2: ð2Þ

These equations follow directly from the Pythagorean

theorem: the ray velocity is the vector sum of motion

perpendicular to the wavefront, V(h), and motion

parallel to the wavefront, dV(h)/dh (Dellinger, 1991).

Triplications occur when one ray direction is asso-

ciated with more than one phase direction of the same
wave type. For transversely isotropic media, triplica-

tions occur when the ray angle / moves forward, then

backtracks, and then moves forward again as the

phase angle h uniformly increases, so that a range of

/ is encountered three times instead of once. Math-

ematically, ‘‘backtracking’’ (and thus triplication)

occurs when

d/
dh

< 0: ð3Þ

Using Eq. (1) to eliminate /, inequality (3) is equiv-

alent to

d2V ðhÞ
dh2

þ V ðhÞ < 0; ð4Þ

where V(h) is the phase-velocity function (Dellinger,

1991). It should be noted that Eqs. (3) to (4) are

derived from geometrical considerations only. They

do not consider amplitudes and ignore the complex

waveform effects associated with triplications at finite

frequencies (Burridge, 1967).

The exact expression for the qSV phase (plane-

wave) velocity in a homogenous transversely isotropic

medium is

V 2
qSVðhÞ ¼

1

2q
C55 þ C33cos

2h þ C11sin
2h

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððC33�C55Þcos2h�ðC11�C55Þsin2hÞ2þ4ðC13þC55Þ2sin2hcos2h

q
�;

ð5Þ

where the Cah are elastic moduli (Thomsen, 1986).

We will limit our discussion in this paper to normally

polarized transversely isotropic media, i.e., those with

C11>C55, C33>C55, and C13>�C55. Otherwise, the

terminology ‘‘qSV mode’’ ceases to make physical

sense, and some of the equations governing qSV

triplication presented in this paper become invalid

(Dellinger, 1991).

We wish to categorize sets of elastic constants as

either representing ‘‘triplicating’’ or ‘‘non-triplicat-

ing’’ media. The borderline case occurs when both

the first and second derivatives of / with respect to h
are simultaneously zero for some h. At such an

‘‘incipient triplication’’, the ray angle / pauses in its

forward motion as h increases (d//dh = 0), but does
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not then backtrack. Instead, after pausing, it continues

forward again (d2//dh2 = 0).
Dellinger (1991) examined the behavior of qSV

waves in homogenous transversely isotropic media as

a function of C13. He observed that incipient triplica-

tion can only occur when one of the two terms under

the square root in Eq. (5) is zero. The second term is

zero when either h = 0j or h = 90j, so this term

governs ‘‘on-axis’’ triplication. For h = 0j, triplication
occurs when

ðC13 þ C55Þ2 � C11ðC33 � C55Þ > 0; ð6Þ

and for h = 90j, triplication occurs when

ðC13 þ C55Þ2 � C33ðC11 � C55Þ > 0 ð7Þ

(Musgrave, 1970). On-axis triplication becomes more

pronounced as C13 is increased.

The first term under the square root in Eq. (5) is

zero when

sin2hi ¼
C33 � C55

C33 þ C11 � 2C55

; ð8Þ

which provides a formula for the angle hi at which
incipient ‘‘off-axis’’ triplication occurs. If C33 =C11,
Fig. 1. A shear-wave group-velocity surface that has an off-axis qSV triplic

polarization direction.
the incipient triplication occurs at exactly h = 45j.
Evaluated at hi, inequality (4) becomes

ðC13 þ C55Þ2 � 3C2
55 þ C55ðC33 þ C11Þ � 3C11C33

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC33 � C55ÞðC11 � C55Þ

p C33C11�C2
55

C13 þ C55

>0

ð9Þ

(Payton, 1983). Off-axis triplication becomes more

pronounced as C13 is decreased.

Off-axis triplications may be important because

interbedded thin layers are often a major contributor

to observed geological anisotropy at seismic wave-

lengths, and transverse isotropy due to thin isotropic

layering may give rise to off-axis qSV triplications, but

not on-axis ones (Berryman, 1979). Fig. 1 shows a

qSV wavefront calculated for Greenhorn shale (Jones

and Wang, 1981), a rock made up of innumerable thin

layers. It exhibits off-axis triplication near 45j, extend-
ing towards the symmetry axes and ending in cusps.

Inequality (9) gives a combination of elastic param-

eters that, if positive, indicates that a particular trans-

versely isotropic medium supports off-axis qSV

triplications. The problem is that this particular com-
ation, near 45j. The small line segments indicate the particle-motion



L. Thomsen, J. Dellinger / Journal of Applied Geophysics 54 (2003) 289–296292
bination is both complicated and unfamiliar from other

contexts, so that no intuitive understanding results.
3. An approximate solution

The combinations of elastic moduli defined by

Thomsen (1986),

eu
C11 � C33

2C33

ð10Þ

and

du
ðC13 þ C55Þ2 � ðC33 � C55Þ2

2C33ðC33 � C55Þ
; ð11Þ

and by Tsvankin and Thomsen (1994),

ru
C33

C55

ðe� dÞ; ð12Þ

have been found useful in the context of weakly

transversely isotropic media, because they reduce to

zero in the limiting case of isotropy. For example, to

first order in d and e, Eq. (5) reduces to

V 2
qSVðhÞ ¼

C55

q
ð1þ 2rsin2hcos2hÞ; ð13Þ

a considerable simplification.

The ‘‘weak-anisotropy’’ parameters d, e, and r
have also proven useful for analyzing strongly aniso-

tropic media. For example, Eq. (13) is also valid for

small h regardless of the magnitudes of d, e, and r.
The parameter r therefore governs the paraxial be-

havior of qSV waves whether the anisotropy is weak

or strong. The parameter d similarly controls the

paraxial behavior of qP-waves.

Represented in terms of r and d, Eq. (6), the

condition for triplication at h = 0j becomes

r < � 1

2
ð14Þ

without approximation. Eq. (7), the condition for

triplication at h = 90j becomes (again without

approximation)

r < � 1

2
� d þ 1

2C2
0

; ð15Þ
where C0u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C33=C55

p
is the vertical Vp/Vs veloc-

ity ratio.

Inequality (9), the inequality governing off-axis

triplication, can also be exactly rewritten in terms of

d, r, and C0, albeit in a somewhat expanded form.

Some approximation is necessary to produce a result

simple enough to be useful. Inequalities (14) and (15)

already demonstrated that r is the primary measure of

anisotropy governing the phenomenon of qSV tripli-

cation for the on-axis cases of h= 0 and h = 90j.
Inequality (15) further suggests that an expansion in

terms of d and 1/C0
2 might be fruitful.

We therefore begin by assuming that the P-wave

anisotropy parameter d is small, and that the squared

Vp/Vs velocity ratio C0
2 =C33/C55 is large, and ex-

pand inequality (9) retaining only linear terms in d
and 1/C0

2. This yields

r 1þ 3r
4

1þ 2� r

3C2
0

� �
� 2d

� �
� d

	 

> 1 ð16Þ

(Thomsen, 2002). Note we have not made any

particular assumption about the size of r, which Eq.

(12) shows contains the term dC0
2 in its definition.

Eq. (16) is a cubic inequality in r, which can be

solved analytically, although only one of the three

solutions is physically meaningful. If we further

approximate the solution by setting d= 0 and

C0 =l, the resulting quadratic inequality has the

physically meaningful solution

r >
2

3
: ð17Þ

We can refine the approximation by replacing r in

the (small) term in curly brackets in Eq. (16) by 2/3,

2� r

3C2
0

� �
c

2� 2=3

3C2
0

� �
¼ 4

9C2
0

� �
; ð18Þ

and then solving the remaining quadratic to yield

r > rcriticalu
2

3
1þ d � 1

9C2
0

� �
ð19Þ

as the condition for triplications to occur. This is the

primary result reached here; it is a simple approxima-

tion to the exact result, inequality (9).



Fig. 2. The condition for onset of off-axis triplication for two different values of C0. Media with elastic parameters that plot above the solid

curve support off-axis triplication. The dotted line shows the approximation of inequality (9).

Fig. 3. The condition for onset of off-axis triplication for two

different values of C0, expressed as a function of e= d+ r/C0
2. Media

with elastic parameters that plot above the relevant curve support

off-axis triplication.
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This result can be conveniently reproduced using

any modern symbolic algebra manipulation program.

Start from Eq. (9) and recast it in terms of the

dimensionless parameters d, r, and C0
� 2. The number

of parameters is then reduced by one because the

overall scale of the elastic constants does not matter

for this problem and divides out. The resulting cubic

equation may be solved for r analytically. Expanding

the one physically meaningful solution in a power

series in d and 1/C0
2 and dropping terms of order

higher than one reproduces Eq. (19).

Fig. 2 illustrates the accuracy of this approxima-

tion, comparing it to realizations of the exact inequal-

ity (9) for two different values of C0. The accuracy of

the approximation depends only very weakly on C0.

The approximation is also apparently accurate over

the range [� 0.1 < d < 0.2], which includes most cases

of geophysical interest (see for example Wang

(2002)). Fig. 2 thus confirms that r is the primary

measure of anisotropy governing the phenomenon of

qSV triplication for the off-axis as well as the on-axis

case, and justifies our choice of expansion.

Our approximation does start to significantly di-

verge from the exact solution for d <� 0.15, but this

should not be a problem in practice, as we can see by

rewriting inequality (9) as a relationship between d
and e, as shown in Fig. 3. We expect to always have

ez 0 for cases of geophysical interest (Thomsen,

2002). Examining Fig. 3, we can then see that rocks

with a strongly negative d should always lie well

inside the region of off-axis triplication.
The exact curves in Figs. 2 and 3 were calculated

by fixing C11, C33, and C55 and then varying C13 to

make the curve. It is not clear from inequality (9) how

other cases would appear with these moduli fixed at

different values, or with a different set of three moduli

fixed. The approximation of inequality (19) makes it

immediately clear that r is the primary parameter

governing the phenomenon, followed by d and C0
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in that order; this was not obvious from the weak-

anisotropy relation (13).
0

4. Some implications

With the simple approximate condition (19) for the

onset of off-axis triplication, it is possible to immedi-

ately see some implications. For example, it is clear

from Eq. (12) that inequality (19) is also a condition

on the difference (e� d). Noting from Fig. 2 that the

approximation always underestimates the extent of

triplication, we can therefore state that whenever a

transversely isotropic medium has

ðe� dÞzðe� dÞcriticalurcritical=C
2
0; ð20Þ

then that material should support off-axis qSV

triplications.

For example, for C0 = 3 (a typical value for

marine sediments), the value of (e� d)critical is near

0.07. This is not a large value; in fact, it lies in the

range where perturbation theory can be used. This is

important because this difference (e� d ) is familiar

in other contexts, as it controls the departure of the

qP-wavefront from the elliptical. In fact, Alkhalifah

and Tsvankin (1995) showed that for transversely

isotropic media with a vertical symmetry axis, the

parameter

g ¼ ðe� dÞ
1þ 2d

ð21Þ

controls all non-hyperbolic time-domain kinematic

seismic effects in surface-reflection qP-wave data,

even for the case of strong anisotropy.

Following this work, many studies have estimated

g from seismic reflection data (see for example

Alkhalifah and Rampton (2001)), and most of these

have concluded that many formations of the sedimen-

tary crust have values of g greater than 0.07. It follows

from Eq. (20) that these formations would exhibit

qSV triplication in data properly acquired to look for

this effect. In fact, triplications have already been

observed in Vertical Seismic Profile data acquired

for oil-industry purposes (Slater et al., 1993). If the

intuitive understanding enabled by this work led to the

perception that triplications gave a sensitive measure

of something useful, then it is likely that many more
observations would be attempted and some would be

successful.
5. Locating off-axis triplications

How close to vertical should we expect to observe

off-axis triplication? In a principle, we can answer this

question exactly and completely by simply inserting

Eq. (5) into Eq. (1), and then looking to see over what

range of ray angles / that the triplication condition

given by inequality (3) is satisfied for a given set of

elastic constants. Unfortunately, the exact result is

extremely complex; to gain insight, some approxima-

tion is necessary.

The problem considerably simplifies if we only

attempt to find a formula for the ray angle at which

incipient triplication occurs, /i. We begin by fixing

r = rcritical, using the approximation of Eq. (19). We

then perform the necessary derivatives with respect to

h needed to calculate /. We can then fix h = hi using
the exact value given by Eq. (8), obtaining an ex-

tremely accurate approximation for /i.

Because Eq. (8) for hi does not involve C13, it can

be expressed purely in terms of C0 and e:

sin2hi ¼
1

2

C2
0 � 1

ð1þ eÞC2
0 � 1

� �
: ð22Þ

This suggests that the critical parameter controlling

the position of the off-axis triplication is e. We

therefore use Eq. (12) to eliminate d from Eq. (19)

as well, obtaining

rcritical ¼
18þ 18e� 2=C2

0

27þ 18=C2
0

: ð23Þ

Our approximate /i can then be expressed as a

function of just two parameters, e and C0.

Unfortunately, the resulting formula is still un-

wieldy. To simplify it further, we expand it in a Taylor

series to first order in 1/C0
2 and second order in e, and

discard small cross terms. We then obtain the concise

approximation

/ic
p
4
� e

ð1� eÞ
4

þ 1

3C2

� �
; ð24Þ
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where /i is measured in radians from the (vertical)

symmetry axis. Note that it is the P-wave anisotropy

parameter e which apparently controls this qSV

phenomenon!

Fig. 4 demonstrates the accuracy of this approxi-

mation. The top two rows in Fig. 4 are calculated for

r = rcritical as given by Eq. (19), for two different C0

and four different e spanning the full range of values

of likely geophysical interest. We can see from the top

two rows that Eq. (19) does a good job of predicting

the value of r for which incipient triplication occurs,

and Eq. (24) does a very good job of predicting the

ray angle of that incipient triplication.

The second two rows repeat the same values of C0

and e, but have r scaled up by a factor of 1.82 so that

the media strongly triplicate. The arbitrary values of

C0 = 2.05 and r/rcritical = 1.82 were chosen so that one

of the entries would correspond to real a rock,

Greenhorn shale (Jones and Wang, 1981). Comparing
Fig. 4. Group-velocity surfaces v(/) for qSV waves in transversely isotrop

by a column, from left to right) and two different values of C0 and r/rcrit

incipient triplication /i as approximated by Eq. (24). The shorter dashed
the two sets of examples, we can see that as r
increases the triplication grows larger and also shifts

position, but the incipient ray angle /i still lies well

within the zone of triplication. More importantly,

comparing the different examples in the second set,

we can see that the triplications are all approximately

the same size despite having very different e and C0.

We conclude that the ratio r/rcritical is the dominant

factor predicting the extent of off-axis triplication.

Snell’s law ensures that upcoming shear waves in

typical converted-wave surveys over horizontally

stratified reflectors will travel at a limited angle away

from the vertical, usually much smaller than 30j. We

expect that the triplications depicted in the lower two

rows of Fig. 4 are ‘‘large’’, at least for geophysical

purposes. Yet, even these large triplications do not

extend to within 30j of the symmetry axis, to where

they could be kinematically detected in a typical

converted-wave survey. We therefore conclude that
ic media with a vertical symmetry axis, for a range of e (increasing,

ical (varying by row). The solid tilted line gives the direction of the

line is at a fixed angle of 45j to the symmetry axis.
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shear-wave triplications are unlikely to be observed in

converted-wave surveys unless a survey is specifically

designed to look for them.
6. Conclusions

We present an approximate solution to an old

problem, for which the exact solution is long known,

but is algebraically complex and impractical to eval-

uate. With appropriate approximations (not assuming

weak qSV-anisotropy), we simplify the conditions for

the onset of triplication, identifying the previously

defined anisotropy parameter r as the controlling

measure of anisotropy. It follows that commonly

measured P-wave kinematics often imply that many

formations of the earth’s sedimentary crust support

qSV triplications. However, the triplications appear to

only occur at angles of shear-wave incidence farther

from the vertical than are typically probed by surface-

seismic converted-wave surveys.
Acknowledgements

We thank BP America for supporting this work,

and for granting permission to publish it. We also
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